Cargando…
A Stochastic Multi-Attribute Method for Measuring Sustainability Performance of a Supplier Based on a Triple Bottom Line Approach in a Dual Hesitant Fuzzy Linguistic Environment
China is a developing country and with the speeding up of its industrialization, the environmental problems are becoming more serious, environmental pollution is a major environmental health problem in China. In order to have a more effective management and control of the significant growth issues o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142858/ https://www.ncbi.nlm.nih.gov/pubmed/32210146 http://dx.doi.org/10.3390/ijerph17062138 |
_version_ | 1783519478247587840 |
---|---|
author | Qu, Guohua Xue, Rudan Li, Tianjiao Qu, Weihua Xu, Zeshui |
author_facet | Qu, Guohua Xue, Rudan Li, Tianjiao Qu, Weihua Xu, Zeshui |
author_sort | Qu, Guohua |
collection | PubMed |
description | China is a developing country and with the speeding up of its industrialization, the environmental problems are becoming more serious, environmental pollution is a major environmental health problem in China. In order to have a more effective management and control of the significant growth issues of environment pollution, green supply chain incentives have started, which is kind of market incentive aiming to moderate the adverse effects of environmental pollution. Proper green chain supply selection and evaluation of companies is becoming very essential in sustainable green supply chain management. Generally speaking, decision-makers (DMs) prefer to provide a set of feasible and quantitative information for making performance evaluation, which motivates us to propose a framework using dual hesitant fuzzy linguistic term set (DHFLTS) and hesitant fuzzy linguistic term set (HFLTS) to select green suppliers. In this paper, group satisfaction and the regret theory are adopted for elicitation of preference information. The DHFLTS and HFLTS provide qualitative preferences of the DMs as well as reflect their hesitancy, inconsistency, and vagueness. Further, two new group satisfaction degrees are defined called the group satisfaction of hesitant fuzzy linguistic term set and dual hesitant fuzzy linguistic term set. Some properties of group satisfaction with DHFLST and HFL are also discussed. Unknown attribute weights are obtained to construct a novel Lagrange function optimization model to maximize the group satisfaction degree, which is an extension of general group satisfaction degree. A novel methodological approach based on two group satisfaction degrees framework and regret theory is developed to rank and select green chain suppliers focusing on specific selection objectives. The proposed model and method of this paper allow the DM to execute different fuzzy scenarios by changing importance weights attached to the triple-bottom-line areas. In the final part, the advantage of the proposed group satisfaction degree under DHFL and HFL background over the existing group satisfaction degree using examples have been presented with different computational combinations. |
format | Online Article Text |
id | pubmed-7142858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71428582020-04-14 A Stochastic Multi-Attribute Method for Measuring Sustainability Performance of a Supplier Based on a Triple Bottom Line Approach in a Dual Hesitant Fuzzy Linguistic Environment Qu, Guohua Xue, Rudan Li, Tianjiao Qu, Weihua Xu, Zeshui Int J Environ Res Public Health Article China is a developing country and with the speeding up of its industrialization, the environmental problems are becoming more serious, environmental pollution is a major environmental health problem in China. In order to have a more effective management and control of the significant growth issues of environment pollution, green supply chain incentives have started, which is kind of market incentive aiming to moderate the adverse effects of environmental pollution. Proper green chain supply selection and evaluation of companies is becoming very essential in sustainable green supply chain management. Generally speaking, decision-makers (DMs) prefer to provide a set of feasible and quantitative information for making performance evaluation, which motivates us to propose a framework using dual hesitant fuzzy linguistic term set (DHFLTS) and hesitant fuzzy linguistic term set (HFLTS) to select green suppliers. In this paper, group satisfaction and the regret theory are adopted for elicitation of preference information. The DHFLTS and HFLTS provide qualitative preferences of the DMs as well as reflect their hesitancy, inconsistency, and vagueness. Further, two new group satisfaction degrees are defined called the group satisfaction of hesitant fuzzy linguistic term set and dual hesitant fuzzy linguistic term set. Some properties of group satisfaction with DHFLST and HFL are also discussed. Unknown attribute weights are obtained to construct a novel Lagrange function optimization model to maximize the group satisfaction degree, which is an extension of general group satisfaction degree. A novel methodological approach based on two group satisfaction degrees framework and regret theory is developed to rank and select green chain suppliers focusing on specific selection objectives. The proposed model and method of this paper allow the DM to execute different fuzzy scenarios by changing importance weights attached to the triple-bottom-line areas. In the final part, the advantage of the proposed group satisfaction degree under DHFL and HFL background over the existing group satisfaction degree using examples have been presented with different computational combinations. MDPI 2020-03-23 2020-03 /pmc/articles/PMC7142858/ /pubmed/32210146 http://dx.doi.org/10.3390/ijerph17062138 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Qu, Guohua Xue, Rudan Li, Tianjiao Qu, Weihua Xu, Zeshui A Stochastic Multi-Attribute Method for Measuring Sustainability Performance of a Supplier Based on a Triple Bottom Line Approach in a Dual Hesitant Fuzzy Linguistic Environment |
title | A Stochastic Multi-Attribute Method for Measuring Sustainability Performance of a Supplier Based on a Triple Bottom Line Approach in a Dual Hesitant Fuzzy Linguistic Environment |
title_full | A Stochastic Multi-Attribute Method for Measuring Sustainability Performance of a Supplier Based on a Triple Bottom Line Approach in a Dual Hesitant Fuzzy Linguistic Environment |
title_fullStr | A Stochastic Multi-Attribute Method for Measuring Sustainability Performance of a Supplier Based on a Triple Bottom Line Approach in a Dual Hesitant Fuzzy Linguistic Environment |
title_full_unstemmed | A Stochastic Multi-Attribute Method for Measuring Sustainability Performance of a Supplier Based on a Triple Bottom Line Approach in a Dual Hesitant Fuzzy Linguistic Environment |
title_short | A Stochastic Multi-Attribute Method for Measuring Sustainability Performance of a Supplier Based on a Triple Bottom Line Approach in a Dual Hesitant Fuzzy Linguistic Environment |
title_sort | stochastic multi-attribute method for measuring sustainability performance of a supplier based on a triple bottom line approach in a dual hesitant fuzzy linguistic environment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142858/ https://www.ncbi.nlm.nih.gov/pubmed/32210146 http://dx.doi.org/10.3390/ijerph17062138 |
work_keys_str_mv | AT quguohua astochasticmultiattributemethodformeasuringsustainabilityperformanceofasupplierbasedonatriplebottomlineapproachinadualhesitantfuzzylinguisticenvironment AT xuerudan astochasticmultiattributemethodformeasuringsustainabilityperformanceofasupplierbasedonatriplebottomlineapproachinadualhesitantfuzzylinguisticenvironment AT litianjiao astochasticmultiattributemethodformeasuringsustainabilityperformanceofasupplierbasedonatriplebottomlineapproachinadualhesitantfuzzylinguisticenvironment AT quweihua astochasticmultiattributemethodformeasuringsustainabilityperformanceofasupplierbasedonatriplebottomlineapproachinadualhesitantfuzzylinguisticenvironment AT xuzeshui astochasticmultiattributemethodformeasuringsustainabilityperformanceofasupplierbasedonatriplebottomlineapproachinadualhesitantfuzzylinguisticenvironment AT quguohua stochasticmultiattributemethodformeasuringsustainabilityperformanceofasupplierbasedonatriplebottomlineapproachinadualhesitantfuzzylinguisticenvironment AT xuerudan stochasticmultiattributemethodformeasuringsustainabilityperformanceofasupplierbasedonatriplebottomlineapproachinadualhesitantfuzzylinguisticenvironment AT litianjiao stochasticmultiattributemethodformeasuringsustainabilityperformanceofasupplierbasedonatriplebottomlineapproachinadualhesitantfuzzylinguisticenvironment AT quweihua stochasticmultiattributemethodformeasuringsustainabilityperformanceofasupplierbasedonatriplebottomlineapproachinadualhesitantfuzzylinguisticenvironment AT xuzeshui stochasticmultiattributemethodformeasuringsustainabilityperformanceofasupplierbasedonatriplebottomlineapproachinadualhesitantfuzzylinguisticenvironment |