Cargando…

Influence of Cu Content on Structure and Magnetic Properties in Fe(86-x)Cu(x)B(14) Alloys

Influence of Cu content on thermodynamic parameters (configurational entropy, Gibbs free energy of mixing, Gibbs free energy of amorphous phase formation), crystallization kinetics, structure and magnetic properties of Fe(86-x)Cu(x)B(14) (x = 0, 0.4, 0.55, 0.7, 1) alloys is investigated. The chemica...

Descripción completa

Detalles Bibliográficos
Autores principales: Warski, Tymon, Wlodarczyk, Patryk, Polak, Marcin, Zackiewicz, Przemyslaw, Radon, Adrian, Wojcik, Anna, Szlezynger, Maciej, Kolano-Burian, Aleksandra, Hawelek, Lukasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142892/
https://www.ncbi.nlm.nih.gov/pubmed/32209972
http://dx.doi.org/10.3390/ma13061451
_version_ 1783519486285971456
author Warski, Tymon
Wlodarczyk, Patryk
Polak, Marcin
Zackiewicz, Przemyslaw
Radon, Adrian
Wojcik, Anna
Szlezynger, Maciej
Kolano-Burian, Aleksandra
Hawelek, Lukasz
author_facet Warski, Tymon
Wlodarczyk, Patryk
Polak, Marcin
Zackiewicz, Przemyslaw
Radon, Adrian
Wojcik, Anna
Szlezynger, Maciej
Kolano-Burian, Aleksandra
Hawelek, Lukasz
author_sort Warski, Tymon
collection PubMed
description Influence of Cu content on thermodynamic parameters (configurational entropy, Gibbs free energy of mixing, Gibbs free energy of amorphous phase formation), crystallization kinetics, structure and magnetic properties of Fe(86-x)Cu(x)B(14) (x = 0, 0.4, 0.55, 0.7, 1) alloys is investigated. The chemical composition has been optimized using a thermodynamic approach to obtain a minimum of Gibbs free energy of amorphous phase formation (minimum at 0.55 at.% of Cu). By using differential scanning calorimetry method the crystallization kinetics of amorphous melt-spun ribbons was analyzed. It was found that the average activation energy of α-Fe phase crystallization is in the range from 201.8 to 228.74 kJ/mol for studied samples. In order to obtain the lowest power core loss values, the isothermal annealing process was optimized in the temperature range from 260 °C to 400 °C. Materials annealed at optimal temperature had power core losses at 1 T/50 Hz—0.13–0.25 W/kg, magnetic saturation—1.47–1.6 T and coercivity—9.71–13.1 A/m. These samples were characterized by the amorphous structure with small amount of α-Fe nanocrystallites. The studies of complex permeability allowed to determine a minimum of both permeability values at 0.55 at.% of Cu. At the end of this work a correlation between thermodynamic parameters and kinetics, structure and magnetic properties were described.
format Online
Article
Text
id pubmed-7142892
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-71428922020-04-14 Influence of Cu Content on Structure and Magnetic Properties in Fe(86-x)Cu(x)B(14) Alloys Warski, Tymon Wlodarczyk, Patryk Polak, Marcin Zackiewicz, Przemyslaw Radon, Adrian Wojcik, Anna Szlezynger, Maciej Kolano-Burian, Aleksandra Hawelek, Lukasz Materials (Basel) Article Influence of Cu content on thermodynamic parameters (configurational entropy, Gibbs free energy of mixing, Gibbs free energy of amorphous phase formation), crystallization kinetics, structure and magnetic properties of Fe(86-x)Cu(x)B(14) (x = 0, 0.4, 0.55, 0.7, 1) alloys is investigated. The chemical composition has been optimized using a thermodynamic approach to obtain a minimum of Gibbs free energy of amorphous phase formation (minimum at 0.55 at.% of Cu). By using differential scanning calorimetry method the crystallization kinetics of amorphous melt-spun ribbons was analyzed. It was found that the average activation energy of α-Fe phase crystallization is in the range from 201.8 to 228.74 kJ/mol for studied samples. In order to obtain the lowest power core loss values, the isothermal annealing process was optimized in the temperature range from 260 °C to 400 °C. Materials annealed at optimal temperature had power core losses at 1 T/50 Hz—0.13–0.25 W/kg, magnetic saturation—1.47–1.6 T and coercivity—9.71–13.1 A/m. These samples were characterized by the amorphous structure with small amount of α-Fe nanocrystallites. The studies of complex permeability allowed to determine a minimum of both permeability values at 0.55 at.% of Cu. At the end of this work a correlation between thermodynamic parameters and kinetics, structure and magnetic properties were described. MDPI 2020-03-23 /pmc/articles/PMC7142892/ /pubmed/32209972 http://dx.doi.org/10.3390/ma13061451 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Warski, Tymon
Wlodarczyk, Patryk
Polak, Marcin
Zackiewicz, Przemyslaw
Radon, Adrian
Wojcik, Anna
Szlezynger, Maciej
Kolano-Burian, Aleksandra
Hawelek, Lukasz
Influence of Cu Content on Structure and Magnetic Properties in Fe(86-x)Cu(x)B(14) Alloys
title Influence of Cu Content on Structure and Magnetic Properties in Fe(86-x)Cu(x)B(14) Alloys
title_full Influence of Cu Content on Structure and Magnetic Properties in Fe(86-x)Cu(x)B(14) Alloys
title_fullStr Influence of Cu Content on Structure and Magnetic Properties in Fe(86-x)Cu(x)B(14) Alloys
title_full_unstemmed Influence of Cu Content on Structure and Magnetic Properties in Fe(86-x)Cu(x)B(14) Alloys
title_short Influence of Cu Content on Structure and Magnetic Properties in Fe(86-x)Cu(x)B(14) Alloys
title_sort influence of cu content on structure and magnetic properties in fe(86-x)cu(x)b(14) alloys
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142892/
https://www.ncbi.nlm.nih.gov/pubmed/32209972
http://dx.doi.org/10.3390/ma13061451
work_keys_str_mv AT warskitymon influenceofcucontentonstructureandmagneticpropertiesinfe86xcuxb14alloys
AT wlodarczykpatryk influenceofcucontentonstructureandmagneticpropertiesinfe86xcuxb14alloys
AT polakmarcin influenceofcucontentonstructureandmagneticpropertiesinfe86xcuxb14alloys
AT zackiewiczprzemyslaw influenceofcucontentonstructureandmagneticpropertiesinfe86xcuxb14alloys
AT radonadrian influenceofcucontentonstructureandmagneticpropertiesinfe86xcuxb14alloys
AT wojcikanna influenceofcucontentonstructureandmagneticpropertiesinfe86xcuxb14alloys
AT szlezyngermaciej influenceofcucontentonstructureandmagneticpropertiesinfe86xcuxb14alloys
AT kolanoburianaleksandra influenceofcucontentonstructureandmagneticpropertiesinfe86xcuxb14alloys
AT haweleklukasz influenceofcucontentonstructureandmagneticpropertiesinfe86xcuxb14alloys