Cargando…

Effective Parameters for 1D Photonic Crystals with Isotropic and Anisotropic Magnetic Inclusions: Coherent Wave Homogenization Theory

A homogenization theory that can go beyond the regime of long wavelengths is proposed, namely, a theory that is still valid for vectors of waves near the edge of the first zone of Brillouin. In this paper, we consider that the displacement vector and the magnetic induction fields have averages in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Méndez, J. Flores, Reyes, A. C. Piñón, Moreno, M. Moreno, Morales-Sánchez, A., Minquiz, Gustavo M., Lázaro, R. C. Ambrosio, Leal, H. Vázquez, García, F. Candia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142940/
https://www.ncbi.nlm.nih.gov/pubmed/32213922
http://dx.doi.org/10.3390/ma13061475
_version_ 1783519498243932160
author Méndez, J. Flores
Reyes, A. C. Piñón
Moreno, M. Moreno
Morales-Sánchez, A.
Minquiz, Gustavo M.
Lázaro, R. C. Ambrosio
Leal, H. Vázquez
García, F. Candia
author_facet Méndez, J. Flores
Reyes, A. C. Piñón
Moreno, M. Moreno
Morales-Sánchez, A.
Minquiz, Gustavo M.
Lázaro, R. C. Ambrosio
Leal, H. Vázquez
García, F. Candia
author_sort Méndez, J. Flores
collection PubMed
description A homogenization theory that can go beyond the regime of long wavelengths is proposed, namely, a theory that is still valid for vectors of waves near the edge of the first zone of Brillouin. In this paper, we consider that the displacement vector and the magnetic induction fields have averages in the volume of the cell associated with the values of the electric and magnetic fields in the edges of the cell, so they satisfy Maxwell’s equations. Applying Fourier formalism, explicit expressions were obtained for the case of a photonic crystal with arbitrary periodicity. In the case of one-dimensional (1D) photonic crystals, the expressions for the tensor of the effective bianisotropic response (effective permittivity, permeability and crossed magneto-electric tensors) are remarkably simplified. Specifically, the effective permittivity and permeability tensors are calculated for the case of 1D photonic crystals with isotropic and anisotropic magnetic inclusions. Through a numerical calculation, the dependence of these effective tensors upon the filling fraction of the magnetic inclusion is shown and analyzed. Our results show good correspondence with the approach solution of Rytov’s effective medium. The derived formulas can be very useful for the design of anisotropic systems with specific optical properties that exhibit metamaterial behavior.
format Online
Article
Text
id pubmed-7142940
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-71429402020-04-14 Effective Parameters for 1D Photonic Crystals with Isotropic and Anisotropic Magnetic Inclusions: Coherent Wave Homogenization Theory Méndez, J. Flores Reyes, A. C. Piñón Moreno, M. Moreno Morales-Sánchez, A. Minquiz, Gustavo M. Lázaro, R. C. Ambrosio Leal, H. Vázquez García, F. Candia Materials (Basel) Article A homogenization theory that can go beyond the regime of long wavelengths is proposed, namely, a theory that is still valid for vectors of waves near the edge of the first zone of Brillouin. In this paper, we consider that the displacement vector and the magnetic induction fields have averages in the volume of the cell associated with the values of the electric and magnetic fields in the edges of the cell, so they satisfy Maxwell’s equations. Applying Fourier formalism, explicit expressions were obtained for the case of a photonic crystal with arbitrary periodicity. In the case of one-dimensional (1D) photonic crystals, the expressions for the tensor of the effective bianisotropic response (effective permittivity, permeability and crossed magneto-electric tensors) are remarkably simplified. Specifically, the effective permittivity and permeability tensors are calculated for the case of 1D photonic crystals with isotropic and anisotropic magnetic inclusions. Through a numerical calculation, the dependence of these effective tensors upon the filling fraction of the magnetic inclusion is shown and analyzed. Our results show good correspondence with the approach solution of Rytov’s effective medium. The derived formulas can be very useful for the design of anisotropic systems with specific optical properties that exhibit metamaterial behavior. MDPI 2020-03-24 /pmc/articles/PMC7142940/ /pubmed/32213922 http://dx.doi.org/10.3390/ma13061475 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Méndez, J. Flores
Reyes, A. C. Piñón
Moreno, M. Moreno
Morales-Sánchez, A.
Minquiz, Gustavo M.
Lázaro, R. C. Ambrosio
Leal, H. Vázquez
García, F. Candia
Effective Parameters for 1D Photonic Crystals with Isotropic and Anisotropic Magnetic Inclusions: Coherent Wave Homogenization Theory
title Effective Parameters for 1D Photonic Crystals with Isotropic and Anisotropic Magnetic Inclusions: Coherent Wave Homogenization Theory
title_full Effective Parameters for 1D Photonic Crystals with Isotropic and Anisotropic Magnetic Inclusions: Coherent Wave Homogenization Theory
title_fullStr Effective Parameters for 1D Photonic Crystals with Isotropic and Anisotropic Magnetic Inclusions: Coherent Wave Homogenization Theory
title_full_unstemmed Effective Parameters for 1D Photonic Crystals with Isotropic and Anisotropic Magnetic Inclusions: Coherent Wave Homogenization Theory
title_short Effective Parameters for 1D Photonic Crystals with Isotropic and Anisotropic Magnetic Inclusions: Coherent Wave Homogenization Theory
title_sort effective parameters for 1d photonic crystals with isotropic and anisotropic magnetic inclusions: coherent wave homogenization theory
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142940/
https://www.ncbi.nlm.nih.gov/pubmed/32213922
http://dx.doi.org/10.3390/ma13061475
work_keys_str_mv AT mendezjflores effectiveparametersfor1dphotoniccrystalswithisotropicandanisotropicmagneticinclusionscoherentwavehomogenizationtheory
AT reyesacpinon effectiveparametersfor1dphotoniccrystalswithisotropicandanisotropicmagneticinclusionscoherentwavehomogenizationtheory
AT morenommoreno effectiveparametersfor1dphotoniccrystalswithisotropicandanisotropicmagneticinclusionscoherentwavehomogenizationtheory
AT moralessancheza effectiveparametersfor1dphotoniccrystalswithisotropicandanisotropicmagneticinclusionscoherentwavehomogenizationtheory
AT minquizgustavom effectiveparametersfor1dphotoniccrystalswithisotropicandanisotropicmagneticinclusionscoherentwavehomogenizationtheory
AT lazarorcambrosio effectiveparametersfor1dphotoniccrystalswithisotropicandanisotropicmagneticinclusionscoherentwavehomogenizationtheory
AT lealhvazquez effectiveparametersfor1dphotoniccrystalswithisotropicandanisotropicmagneticinclusionscoherentwavehomogenizationtheory
AT garciafcandia effectiveparametersfor1dphotoniccrystalswithisotropicandanisotropicmagneticinclusionscoherentwavehomogenizationtheory