Cargando…
Deriving Lipid Classification Based on Molecular Formulas
Despite instrument and algorithmic improvements, the untargeted and accurate assignment of metabolites remains an unsolved problem in metabolomics. New assignment methods such as our SMIRFE algorithm can assign elemental molecular formulas to observed spectral features in a highly untargeted manner...
Autores principales: | Mitchell, Joshua M., Flight, Robert M., Moseley, Hunter N.B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143220/ https://www.ncbi.nlm.nih.gov/pubmed/32214009 http://dx.doi.org/10.3390/metabo10030122 |
Ejemplares similares
-
Untargeted Lipidomics of Non-Small Cell Lung Carcinoma Demonstrates Differentially Abundant Lipid Classes in Cancer vs. Non-Cancer Tissue
por: Mitchell, Joshua M., et al.
Publicado: (2021) -
Coordination characterization of zinc metalloproteins
por: Yao, Sen, et al.
Publicado: (2014) -
Scan-Centric, Frequency-Based Method for Characterizing Peaks from Direct Injection Fourier Transform Mass Spectrometry Experiments
por: Flight, Robert M., et al.
Publicado: (2022) -
Proceedings of the Eleventh Annual UT-ORNL-KBRIN Bioinformatics Summit 2012
por: Rouchka, Eric C, et al.
Publicado: (2012) -
Aberrant coordination geometries discovered in the most abundant metalloproteins
por: Yao, Sen, et al.
Publicado: (2017)