Cargando…
Genotoxicity and Oxidative Stress in Experimental Hybrid Catfish Exposed to Heavy Metals in a Municipal Landfill Reservoir
This study aimed to investigate the concentrations of Cr, Cd and Pb in the water, sediment and experimental hybrid catfish muscles, and to compare the genetic differentiation and the levels of oxidative stress biomarkers (malondialdehyde and protein carbonyl) between the catfish from the contaminate...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143293/ https://www.ncbi.nlm.nih.gov/pubmed/32192208 http://dx.doi.org/10.3390/ijerph17061980 |
Sumario: | This study aimed to investigate the concentrations of Cr, Cd and Pb in the water, sediment and experimental hybrid catfish muscles, and to compare the genetic differentiation and the levels of oxidative stress biomarkers (malondialdehyde and protein carbonyl) between the catfish from the contaminated reservoir near a municipal landfill and the reference area after chronic exposure. The concentrations of all metals in the water and the concentration of Cd in the sediment exceeded Thailand’s surface water quality and soil quality standards, respectively, whereas the concentrations of these metals in fish muscles did not exceed Thailand’s food quality standards. Dendrogram results in terms of genetic similarity values of the catfish from the reference and the landfill areas were 0.90 to 0.96 and 0.79 to 0.86, respectively, implying that the genetic differentiation of the fish from the landfill was greater than of those from the reference area. The fish in the landfill reservoir had slightly increased protein carbonyl levels. The results indicate that chronic heavy metal exposure can cause genotoxicity of the hybrid catfish and induce protein carbonyl as an oxidative stress biomarker in the reservoir near a municipal landfill. |
---|