Cargando…
Modelling of Urban Air Pollutant Concentrations with Artificial Neural Networks Using Novel Input Variables
Since operating urban air quality stations is not only time consuming but also costly, and because air pollutants can cause serious health problems, this paper presents the hourly prediction of ten air pollutant concentrations (CO(2), NH(3), NO, NO(2), NO(x), O(3), PM(1), PM(2.5), PM(10) and PN(10))...
Autores principales: | Goulier, Laura, Paas, Bastian, Ehrnsperger, Laura, Klemm, Otto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143381/ https://www.ncbi.nlm.nih.gov/pubmed/32204378 http://dx.doi.org/10.3390/ijerph17062025 |
Ejemplares similares
-
Estimation of COVID-19 patient numbers using artificial neural networks based on air pollutant concentration levels
por: Keskin, Gülşen Aydın, et al.
Publicado: (2022) -
Principal Component Regression and Artificial Neural Network: The Prediction of Air Pollution Index (API)
por: Hua, Ang Kean, et al.
Publicado: (2021) -
Influence of Straw Burning on Urban Air Pollutant Concentrations in Northeast China
por: Wang, Zhenzhen, et al.
Publicado: (2019) -
Air quality assessment and pollution forecasting using artificial neural networks in Metropolitan Lima-Peru
por: Cordova, Chardin Hoyos, et al.
Publicado: (2021) -
Artificial Neural Networks, Sequence-to-Sequence LSTMs, and Exogenous Variables as Analytical Tools for NO(2) (Air Pollution) Forecasting: A Case Study in the Bay of Algeciras (Spain)
por: González-Enrique, Javier, et al.
Publicado: (2021)