Cargando…
In Situ Spinel Formation in a Smart Nano-Structured Matrix for No-Cement Refractory Castables
The hydration of an equimolar mixture of MgO and Al(2)O(3) nano-powders has been proven to be an effective way to synthesize Mg(6)Al(2)CO(3)(OH)(16)∙4H(2)O as a component of a nano-structured matrix and magnesia-alumina spinel precursor for high-performance cement-free corundum-spinel refractory cas...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143384/ https://www.ncbi.nlm.nih.gov/pubmed/32204497 http://dx.doi.org/10.3390/ma13061403 |
Sumario: | The hydration of an equimolar mixture of MgO and Al(2)O(3) nano-powders has been proven to be an effective way to synthesize Mg(6)Al(2)CO(3)(OH)(16)∙4H(2)O as a component of a nano-structured matrix and magnesia-alumina spinel precursor for high-performance cement-free corundum-spinel refractory castables. (Mg(3))–OH–brucite sites (417 °C) formed initially within the magnesia–alumina hydrating blended paste were replaced with (Mg(2)Al)–OH and (Mg(3))–OH hydrotalcite sites, which were dehydroxylated at 420 °C and 322 °C, respectively. This reorganization was connected with the incorporation of anions and water molecules in the interlayer spacing of hydrotalcite, which was dehydrated at 234 °C. Hence, the thermal decomposition of a nano-structured matrix system containing mainly Mg(6)Al(2)CO(3)(OH)(16)∙4H(2)O consists of a complex sequence of dehydration, dehydroxylation and decarbonization, and this finally leads to the formation of inverse spinel MgAl(2)O(4) and periclase MgO through many intermediate stages containing the mixed tetrahedral-octahedral Al phase and MgO-like structure. Hence, the hydraulic bond that primarily existed was replaced by a ceramic bond at a relatively low temperature, i.e., 700 °C, where a spinel was formed. Important changes in oxygen coordination polyhedra around Al(3+) in the dehydrated-dehydroxylated hydrotalcite occurred between 600 and 1100 °C. |
---|