Cargando…
Dietary Supplemented Curcumin Improves Meat Quality and Antioxidant Status of Intrauterine Growth Retardation Growing Pigs via Nrf2 Signal Pathway
SIMPLE SUMMARY: More than 15% of piglets and about 10% of newborn humans suffer from intrauterine growth retardation (IUGR), which refers to growth lag, developmental restriction and impaired organs in the fetus. IUGR exhibits programming consequences and exerts permanent negative effects on postnat...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143559/ https://www.ncbi.nlm.nih.gov/pubmed/32213933 http://dx.doi.org/10.3390/ani10030539 |
Sumario: | SIMPLE SUMMARY: More than 15% of piglets and about 10% of newborn humans suffer from intrauterine growth retardation (IUGR), which refers to growth lag, developmental restriction and impaired organs in the fetus. IUGR exhibits programming consequences and exerts permanent negative effects on postnatal growth and health. Dietary supplemented curcumin, as the main natural polyphenol isolated from the natural antioxidant (turmeric), might show possible effects on antioxidant capacity, and the meat quality of IUGR pigs. Therefore, in our present study, 12 normal birth weight (NBW) and 24 IUGR neonatal female piglets were selected and fed control diets supplemented 0 (NBW), 0 (IUGR) and 200 (IUGR + Cur) mg/kg curcumin from 26 to 115 days of age (n = 12). The growth performance, meat quality, redox status and its related Nrf2 pathway were determined to test the hypothesis that curcumin may play beneficial roles against IUGR-induced oxidative stress. This study suggested that curcumin could serve as a potential natural antioxidant in nutrition interventions of IUGR offspring to enhance the redox status and improve the meat quality of leg muscles. These results attained from IUGR pig models can also provide some useful theoretical references for IUGR offspring in humans. ABSTRACT: Intrauterine growth retardation (IUGR) exhibits programming consequences and may induce oxidative stress in growing animals and humans. This study was conducted to investigate the hypothesis that dietary curcumin may protect growing pigs from IUGR-induced oxidative stress via the Nrf2 pathway. Twelve normal birth weight (NBW) and 24 IUGR female piglets were selected and fed control diets supplemented 0 (NBW), 0 (IUGR) and 200 (IUGR + Cur) mg/kg curcumin from 26 to 115 days of age (n = 12). Growth performance, meat quality, redox status and its related Nrf2 pathway were determined. Results showed that IUGR pigs exhibited decreased body weight on 0 d, 26 d and 56 d (p < 0.01) but had no difference on 115 d among NBW, IUGR and IUGR + Cur groups (p > 0.05). Compared with NBW and IUGR groups, a significant decrease in drip loss (24 h and 48 h) was observed in the IUGR + Cur group (p < 0.01). IUGR pigs had higher concentrations of malondialdehyde (MDA) (p < 0.01) and protein carbonyl (PC) (p = 0.03) and lower activities of glutathione peroxidase (p = 0.02), catalase (p < 0.01) and peroxidase (p = 0.02) in leg muscles than NBW pigs. Dietary-added 200 mg/kg curcumin decreased concentrations of MDA and PC and improved the activities of catalase, superoxide dismutase (SOD) and peroxidase as compared to the IUGR group (p < 0.05). Additionally, dietary curcumin enhanced protein (NQO1) and mRNA expression of genes (Nrf2, NQO1, gamma-glutamyltransferase 1 (GGT1), heme oxygenase-1 (HO-1), glutathione S-transferase (GST) and catalase (CAT)) as compared to the IUGR group (p < 0.05). These results suggest that dietary curcumin could serve as a potential additive to enhance redox status and improve meat quality of IUGR growing pigs via the Nrf2 signal pathway. |
---|