Cargando…
The New Technologies Developed from Laser Shock Processing
Laser shock processing (LSP) is an advanced material surface hardening technology that can significantly improve mechanical properties and extend service life by using the stress effect generated by laser-induced plasma shock waves, which has been increasingly applied in the processing fields of met...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143743/ https://www.ncbi.nlm.nih.gov/pubmed/32209999 http://dx.doi.org/10.3390/ma13061453 |
_version_ | 1783519683597565952 |
---|---|
author | Wu, Jiajun Zhao, Jibin Qiao, Hongchao Hu, Xianliang Yang, Yuqi |
author_facet | Wu, Jiajun Zhao, Jibin Qiao, Hongchao Hu, Xianliang Yang, Yuqi |
author_sort | Wu, Jiajun |
collection | PubMed |
description | Laser shock processing (LSP) is an advanced material surface hardening technology that can significantly improve mechanical properties and extend service life by using the stress effect generated by laser-induced plasma shock waves, which has been increasingly applied in the processing fields of metallic materials and alloys. With the rapidly development of modern industry, many new technologies developed from LSP have emerged, which broadens the application of LSP and enriches its technical theory. In this work, the technical theory of LSP was summarized, which consists of the fundamental principle of LSP and the laser-induced plasma shock wave. The new technologies, developed from LSP, are introduced in detail from the aspect of laser shock forming (LSF), warm laser shock processing (WLSP), laser shock marking (LSM) and laser shock imprinting (LSI). The common feature of LSP and these new technologies developed from LSP is the utilization of the laser-generated stress effects rather than the laser thermal effect. LSF is utilized to modify the curvature of metal sheet through the laser-induced high dynamic loading. The material strength and the stability of residual stress and micro-structures by WLSP treatment are higher than that by LSP treatment, due to WLSP combining the advantages of LSP, dynamic strain aging (DSA) and dynamic precipitation (DP). LSM is an effective method to obtain the visualized marks on the surface of metallic materials or alloys, and its critical aspect is the preparation of the absorbing layer with a designed shape and suitable thickness. At the high strain rates induced by LSP, LSI has the ability to complete the direct imprinting over the large-scale ultrasmooth complex 3D nanostructures arrays on the surface of crystalline metals. This work has important reference value and guiding significance for researchers to further understand the LSP theory and the new technologies developed from LSP. |
format | Online Article Text |
id | pubmed-7143743 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71437432020-04-14 The New Technologies Developed from Laser Shock Processing Wu, Jiajun Zhao, Jibin Qiao, Hongchao Hu, Xianliang Yang, Yuqi Materials (Basel) Review Laser shock processing (LSP) is an advanced material surface hardening technology that can significantly improve mechanical properties and extend service life by using the stress effect generated by laser-induced plasma shock waves, which has been increasingly applied in the processing fields of metallic materials and alloys. With the rapidly development of modern industry, many new technologies developed from LSP have emerged, which broadens the application of LSP and enriches its technical theory. In this work, the technical theory of LSP was summarized, which consists of the fundamental principle of LSP and the laser-induced plasma shock wave. The new technologies, developed from LSP, are introduced in detail from the aspect of laser shock forming (LSF), warm laser shock processing (WLSP), laser shock marking (LSM) and laser shock imprinting (LSI). The common feature of LSP and these new technologies developed from LSP is the utilization of the laser-generated stress effects rather than the laser thermal effect. LSF is utilized to modify the curvature of metal sheet through the laser-induced high dynamic loading. The material strength and the stability of residual stress and micro-structures by WLSP treatment are higher than that by LSP treatment, due to WLSP combining the advantages of LSP, dynamic strain aging (DSA) and dynamic precipitation (DP). LSM is an effective method to obtain the visualized marks on the surface of metallic materials or alloys, and its critical aspect is the preparation of the absorbing layer with a designed shape and suitable thickness. At the high strain rates induced by LSP, LSI has the ability to complete the direct imprinting over the large-scale ultrasmooth complex 3D nanostructures arrays on the surface of crystalline metals. This work has important reference value and guiding significance for researchers to further understand the LSP theory and the new technologies developed from LSP. MDPI 2020-03-23 /pmc/articles/PMC7143743/ /pubmed/32209999 http://dx.doi.org/10.3390/ma13061453 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Wu, Jiajun Zhao, Jibin Qiao, Hongchao Hu, Xianliang Yang, Yuqi The New Technologies Developed from Laser Shock Processing |
title | The New Technologies Developed from Laser Shock Processing |
title_full | The New Technologies Developed from Laser Shock Processing |
title_fullStr | The New Technologies Developed from Laser Shock Processing |
title_full_unstemmed | The New Technologies Developed from Laser Shock Processing |
title_short | The New Technologies Developed from Laser Shock Processing |
title_sort | new technologies developed from laser shock processing |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143743/ https://www.ncbi.nlm.nih.gov/pubmed/32209999 http://dx.doi.org/10.3390/ma13061453 |
work_keys_str_mv | AT wujiajun thenewtechnologiesdevelopedfromlasershockprocessing AT zhaojibin thenewtechnologiesdevelopedfromlasershockprocessing AT qiaohongchao thenewtechnologiesdevelopedfromlasershockprocessing AT huxianliang thenewtechnologiesdevelopedfromlasershockprocessing AT yangyuqi thenewtechnologiesdevelopedfromlasershockprocessing AT wujiajun newtechnologiesdevelopedfromlasershockprocessing AT zhaojibin newtechnologiesdevelopedfromlasershockprocessing AT qiaohongchao newtechnologiesdevelopedfromlasershockprocessing AT huxianliang newtechnologiesdevelopedfromlasershockprocessing AT yangyuqi newtechnologiesdevelopedfromlasershockprocessing |