Cargando…
Artificial Neural Network and Response Surface Methodology Based Analysis on Solid Particle Erosion Behavior of Polymer Matrix Composites
Polymer-based fibrous composites are gaining popularity in marine and sports industries because of their prominent features like easy to process, better strength to weight ratio, durability and cost-effectiveness. Still, erosive behavior of composites under cyclic abrasive impact is a significant co...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143861/ https://www.ncbi.nlm.nih.gov/pubmed/32197554 http://dx.doi.org/10.3390/ma13061381 |
Sumario: | Polymer-based fibrous composites are gaining popularity in marine and sports industries because of their prominent features like easy to process, better strength to weight ratio, durability and cost-effectiveness. Still, erosive behavior of composites under cyclic abrasive impact is a significant concern for the research fraternity. In this paper, the S type woven glass fibers reinforced polymer matrix composites (PMC(s)) are used to analyze the bonding behavior of reinforcement and matrix against the natural abrasive slurry. The response surface methodology is adopted to analyze the effect of various erosion parameters on the erosion resistance. The slurry pressure, impingement angle and nozzle diameter, were used as erosion parameters whereas erosion loss, i.e., weight loss during an erosion phenomenon was considered as a response parameter. The artificial neural network model was used to validate the attained outcomes for an optimum solution. The comparative analysis of response surface methodology (RSM) and artificial neural network (ANN) models shows good agreement with the erosion behavior of glass fiber reinforced polymer matrix composites. |
---|