Cargando…

[1,5]-Hydride Shift-Cyclization versus C(sp(2))-H Functionalization in the Knoevenagel-Cyclization Domino Reactions of 1,4- and 1,5-Benzoxazepines

Domino cyclization reactions of N-aryl-1,4- and 1,5-benzoxazepine derivatives involving [1,5]-hydride shift or C(sp(2))-H functionalization were investigated. Neuroprotective and acetylcholinesterase activities of the products were studied. Domino Knoevenagel-[1,5]-hydride shift-cyclization reaction...

Descripción completa

Detalles Bibliográficos
Autores principales: Szalóki Vargáné, Dóra, Tóth, László, Buglyó, Balázs, Kiss-Szikszai, Attila, Mándi, Attila, Mátyus, Péter, Antus, Sándor, Chen, Yinghan, Li, Dehai, Tao, Lingxue, Zhang, Haiyan, Kurtán, Tibor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144003/
https://www.ncbi.nlm.nih.gov/pubmed/32168821
http://dx.doi.org/10.3390/molecules25061265
Descripción
Sumario:Domino cyclization reactions of N-aryl-1,4- and 1,5-benzoxazepine derivatives involving [1,5]-hydride shift or C(sp(2))-H functionalization were investigated. Neuroprotective and acetylcholinesterase activities of the products were studied. Domino Knoevenagel-[1,5]-hydride shift-cyclization reaction of N-aryl-1,4-benzoxazepine derivatives with 1,3-dicarbonyl reagents having active methylene group afforded the 1,2,8,9-tetrahydro-7bH-quinolino [1,2-d][1,4]benzoxazepine scaffold with different substitution pattern. The C(sp(3))-H activation step of the tertiary amine moiety occurred with complete regioselectivity and the 6-endo cyclization took place in a complete diastereoselective manner. In two cases, the enantiomers of the chiral condensed new 1,4-benzoxazepine systems were separated by chiral HPLC, HPLC-ECD spectra were recorded, and absolute configurations were determined by time-dependent density functional theory- electronic circular dichroism (TDDFT-ECD) calculations. In contrast, the analogue reaction of the regioisomeric N-aryl-1,5-benzoxazepine derivative did not follow the above mechanism but instead the Knoevenagel intermediate reacted in an S(E)Ar reaction [C(sp(2))-H functionalization] resulting in a condensed acridane derivative. The AChE inhibitory assays of the new derivatives revealed that the acridane derivative had a 6.98 μM IC(50) value.