Cargando…

Marked Neurospora crassa Strains for Competition Experiments and Bayesian Methods for Fitness Estimates

The filamentous fungus Neurospora crassa, a model microbial eukaryote, has a life cycle with many features that make it suitable for studying experimental evolution. However, it has lacked a general tool for estimating relative fitness of different strains in competition experiments. To remedy this...

Descripción completa

Detalles Bibliográficos
Autores principales: Kronholm, Ilkka, Ormsby, Tereza, McNaught, Kevin J., Selker, Eric U., Ketola, Tarmo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144071/
https://www.ncbi.nlm.nih.gov/pubmed/32001556
http://dx.doi.org/10.1534/g3.119.400632
Descripción
Sumario:The filamentous fungus Neurospora crassa, a model microbial eukaryote, has a life cycle with many features that make it suitable for studying experimental evolution. However, it has lacked a general tool for estimating relative fitness of different strains in competition experiments. To remedy this need, we constructed N. crassa strains that contain a modified csr-1 locus and developed an assay for detecting the proportion of the marked strain using a post PCR high resolution melting assay. DNA extraction from spore samples can be performed on 96-well plates, followed by a PCR step, which allows many samples to be processed with ease. Furthermore, we suggest a Bayesian approach for estimating relative fitness from competition experiments that takes into account the uncertainty in measured strain proportions. We show that there is a fitness effect of the mating type locus, as mating type mat a has a higher competitive fitness than mat A. The csr-1(*) marker also has a small fitness effect, but is still a suitable marker for competition experiments. As a proof of concept, we estimate the fitness effect of the qde-2 mutation, a gene in the RNA interference pathway, and show that its competitive fitness is lower than what would be expected from its mycelial growth rate alone.