Cargando…

Synthesis, biological evaluation and molecular modelling of 2,4-disubstituted-5-(6-alkylpyridin-2-yl)-1H-imidazoles as ALK5 inhibitors

A series of 2,4-disubstituted-5-(6-alkylpyridin-2-yl)-1H-imidazoles, 7a–c, 11a–h, and 16a–h has been synthesised and evaluated for their ALK5 inhibitory activity in an enzyme assay and in a cell-based luciferase reporter assay. Incorporation of a quinoxalin-6-yl moiety and a methylene linker at the...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Myoung-Soon, Park, Hyun-Ju, An, Young Jae, Choi, Joon Hun, Cha, Geunyoung, Lee, Hwa Jeong, Park, So-Jung, Dewang, Purushottam M., Kim, Dae-Kee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144182/
https://www.ncbi.nlm.nih.gov/pubmed/32164459
http://dx.doi.org/10.1080/14756366.2020.1734799
Descripción
Sumario:A series of 2,4-disubstituted-5-(6-alkylpyridin-2-yl)-1H-imidazoles, 7a–c, 11a–h, and 16a–h has been synthesised and evaluated for their ALK5 inhibitory activity in an enzyme assay and in a cell-based luciferase reporter assay. Incorporation of a quinoxalin-6-yl moiety and a methylene linker at the 4- and 2-position of the imidazole ring, respectively, and a m-CONH(2) substituent in the phenyl ring generated a highly potent and selective ALK5 inhibitor 11e. Docking model of ALK5 in complex with 11e showed that it fitted well in the ATP-binding pocket with favourable interactions.