Cargando…
Recognizing hotspots in Brief Eclectic Psychotherapy for PTSD by text and audio mining
Background: Identifying and addressing hotspots is a key element of imaginal exposure in Brief Eclectic Psychotherapy for PTSD (BEPP). Research shows that treatment effectiveness is associated with focusing on these hotspots and that hotspot frequency and characteristics may serve as indicators for...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144328/ https://www.ncbi.nlm.nih.gov/pubmed/32284819 http://dx.doi.org/10.1080/20008198.2020.1726672 |
_version_ | 1783519816491991040 |
---|---|
author | Wiegersma, Sytske Nijdam, Mirjam J. van Hessen, Arjan J. Truong, Khiet P. Veldkamp, Bernard P. Olff, Miranda |
author_facet | Wiegersma, Sytske Nijdam, Mirjam J. van Hessen, Arjan J. Truong, Khiet P. Veldkamp, Bernard P. Olff, Miranda |
author_sort | Wiegersma, Sytske |
collection | PubMed |
description | Background: Identifying and addressing hotspots is a key element of imaginal exposure in Brief Eclectic Psychotherapy for PTSD (BEPP). Research shows that treatment effectiveness is associated with focusing on these hotspots and that hotspot frequency and characteristics may serve as indicators for treatment success. Objective: This study aims to develop a model to automatically recognize hotspots based on text and speech features, which might be an efficient way to track patient progress and predict treatment efficacy. Method: A multimodal supervised classification model was developed based on analog tape recordings and transcripts of imaginal exposure sessions of 10 successful and 10 non-successful treatment completers. Data mining and machine learning techniques were used to extract and select text (e.g. words and word combinations) and speech (e.g. speech rate, pauses between words) features that distinguish between ‘hotspot’ (N = 37) and ‘non-hotspot’ (N = 45) phases during exposure sessions. Results: The developed model resulted in a high training performance (mean F(1)-score of 0.76) but a low testing performance (mean F(1)-score = 0.52). This shows that the selected text and speech features could clearly distinguish between hotspots and non-hotspots in the current data set, but will probably not recognize hotspots from new input data very well. Conclusions: In order to improve the recognition of new hotspots, the described methodology should be applied to a larger, higher quality (digitally recorded) data set. As such this study should be seen mainly as a proof of concept, demonstrating the possible application and contribution of automatic text and audio analysis to therapy process research in PTSD and mental health research in general. |
format | Online Article Text |
id | pubmed-7144328 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-71443282020-04-13 Recognizing hotspots in Brief Eclectic Psychotherapy for PTSD by text and audio mining Wiegersma, Sytske Nijdam, Mirjam J. van Hessen, Arjan J. Truong, Khiet P. Veldkamp, Bernard P. Olff, Miranda Eur J Psychotraumatol Basic Research Article Background: Identifying and addressing hotspots is a key element of imaginal exposure in Brief Eclectic Psychotherapy for PTSD (BEPP). Research shows that treatment effectiveness is associated with focusing on these hotspots and that hotspot frequency and characteristics may serve as indicators for treatment success. Objective: This study aims to develop a model to automatically recognize hotspots based on text and speech features, which might be an efficient way to track patient progress and predict treatment efficacy. Method: A multimodal supervised classification model was developed based on analog tape recordings and transcripts of imaginal exposure sessions of 10 successful and 10 non-successful treatment completers. Data mining and machine learning techniques were used to extract and select text (e.g. words and word combinations) and speech (e.g. speech rate, pauses between words) features that distinguish between ‘hotspot’ (N = 37) and ‘non-hotspot’ (N = 45) phases during exposure sessions. Results: The developed model resulted in a high training performance (mean F(1)-score of 0.76) but a low testing performance (mean F(1)-score = 0.52). This shows that the selected text and speech features could clearly distinguish between hotspots and non-hotspots in the current data set, but will probably not recognize hotspots from new input data very well. Conclusions: In order to improve the recognition of new hotspots, the described methodology should be applied to a larger, higher quality (digitally recorded) data set. As such this study should be seen mainly as a proof of concept, demonstrating the possible application and contribution of automatic text and audio analysis to therapy process research in PTSD and mental health research in general. Taylor & Francis 2020-03-17 /pmc/articles/PMC7144328/ /pubmed/32284819 http://dx.doi.org/10.1080/20008198.2020.1726672 Text en © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Basic Research Article Wiegersma, Sytske Nijdam, Mirjam J. van Hessen, Arjan J. Truong, Khiet P. Veldkamp, Bernard P. Olff, Miranda Recognizing hotspots in Brief Eclectic Psychotherapy for PTSD by text and audio mining |
title | Recognizing hotspots in Brief Eclectic Psychotherapy for PTSD by text and audio mining |
title_full | Recognizing hotspots in Brief Eclectic Psychotherapy for PTSD by text and audio mining |
title_fullStr | Recognizing hotspots in Brief Eclectic Psychotherapy for PTSD by text and audio mining |
title_full_unstemmed | Recognizing hotspots in Brief Eclectic Psychotherapy for PTSD by text and audio mining |
title_short | Recognizing hotspots in Brief Eclectic Psychotherapy for PTSD by text and audio mining |
title_sort | recognizing hotspots in brief eclectic psychotherapy for ptsd by text and audio mining |
topic | Basic Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144328/ https://www.ncbi.nlm.nih.gov/pubmed/32284819 http://dx.doi.org/10.1080/20008198.2020.1726672 |
work_keys_str_mv | AT wiegersmasytske recognizinghotspotsinbriefeclecticpsychotherapyforptsdbytextandaudiomining AT nijdammirjamj recognizinghotspotsinbriefeclecticpsychotherapyforptsdbytextandaudiomining AT vanhessenarjanj recognizinghotspotsinbriefeclecticpsychotherapyforptsdbytextandaudiomining AT truongkhietp recognizinghotspotsinbriefeclecticpsychotherapyforptsdbytextandaudiomining AT veldkampbernardp recognizinghotspotsinbriefeclecticpsychotherapyforptsdbytextandaudiomining AT olffmiranda recognizinghotspotsinbriefeclecticpsychotherapyforptsdbytextandaudiomining |