Cargando…
How Sure Can We Be about ML Methods-Based Evaluation of Compound Activity: Incorporation of Information about Prediction Uncertainty Using Deep Learning Techniques
A great variety of computational approaches support drug design processes, helping in selection of new potentially active compounds, and optimization of their physicochemical and ADMET properties. Machine learning is a group of methods that are able to evaluate in relatively short time enormous amou...
Autores principales: | Sieradzki, Igor, Leśniak, Damian, Podlewska, Sabina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144469/ https://www.ncbi.nlm.nih.gov/pubmed/32210186 http://dx.doi.org/10.3390/molecules25061452 |
Ejemplares similares
-
Three-dimensional descriptors for aminergic GPCRs: dependence on docking conformation and crystal structure
por: Jastrzębski, Stanisław, et al.
Publicado: (2018) -
On the origin of nonequivalent states: How we can talk about preprints
por: Neylon, Cameron, et al.
Publicado: (2017) -
How can SHAP values help to shape metabolic stability of chemical compounds?
por: Wojtuch, Agnieszka, et al.
Publicado: (2021) -
NGAL for Preeclampsia: How Sure are We?
por: Gupta, Sachin, et al.
Publicado: (2021) -
Uncertainties in target volume delineation in radiotherapy – are they relevant and what can we do about them?
por: Segedin, Barbara, et al.
Publicado: (2016)