Cargando…
Prediction Model of Aryl Hydrocarbon Receptor Activation by a Novel QSAR Approach, DeepSnap–Deep Learning
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that senses environmental exogenous and endogenous ligands or xenobiotic chemicals. In particular, exposure of the liver to environmental metabolism-disrupting chemicals contributes to the development and propagation of s...
Autores principales: | Matsuzaka, Yasunari, Hosaka, Takuomi, Ogaito, Anna, Yoshinari, Kouichi, Uesawa, Yoshihiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144728/ https://www.ncbi.nlm.nih.gov/pubmed/32183141 http://dx.doi.org/10.3390/molecules25061317 |
Ejemplares similares
-
DeepSnap-Deep Learning Approach Predicts Progesterone Receptor Antagonist Activity With High Performance
por: Matsuzaka, Yasunari, et al.
Publicado: (2020) -
Molecular Image-Based Prediction Models of Nuclear Receptor Agonists and Antagonists Using the DeepSnap-Deep Learning Approach with the Tox21 10K Library
por: Matsuzaka, Yasunari, et al.
Publicado: (2020) -
Prediction Model with High-Performance Constitutive Androstane Receptor (CAR) Using DeepSnap-Deep Learning Approach from the Tox21 10K Compound Library
por: Matsuzaka, Yasunari, et al.
Publicado: (2019) -
Novel QSAR Approach for a Regression Model of Clearance
That Combines DeepSnap-Deep Learning and Conventional Machine Learning
por: Mamada, Hideaki, et al.
Publicado: (2022) -
Optimization of a Deep-Learning Method Based on the Classification of Images Generated by Parameterized Deep Snap a Novel Molecular-Image-Input Technique for Quantitative Structure–Activity Relationship (QSAR) Analysis
por: Matsuzaka, Yasunari, et al.
Publicado: (2019)