Cargando…

Site-specific proteolytic cleavage prevents ubiquitination and degradation of human REV3L, the catalytic subunit of DNA polymerase ζ

REV3L, the catalytic subunit of DNA polymerase ζ (Pol ζ), is indispensable for translesion DNA synthesis, which protects cells from deleterious DNA lesions resulting from various intrinsic and environmental sources. However, REV3L lacks a proofreading exonuclease activity and consequently bypasses D...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Fengting, Li, Pan, Shao, Yuan, Li, Yanyan, Zhang, Kai, Li, Miaomiao, Wang, Rong, Zheng, Shuo, Wang, Yingying, Song, Sen, Feng, Shiguo, Liu, Fei, Xiao, Wei, Li, Xialu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144948/
https://www.ncbi.nlm.nih.gov/pubmed/32064513
http://dx.doi.org/10.1093/nar/gkaa096
_version_ 1783519911306330112
author Wang, Fengting
Li, Pan
Shao, Yuan
Li, Yanyan
Zhang, Kai
Li, Miaomiao
Wang, Rong
Zheng, Shuo
Wang, Yingying
Song, Sen
Feng, Shiguo
Liu, Fei
Xiao, Wei
Li, Xialu
author_facet Wang, Fengting
Li, Pan
Shao, Yuan
Li, Yanyan
Zhang, Kai
Li, Miaomiao
Wang, Rong
Zheng, Shuo
Wang, Yingying
Song, Sen
Feng, Shiguo
Liu, Fei
Xiao, Wei
Li, Xialu
author_sort Wang, Fengting
collection PubMed
description REV3L, the catalytic subunit of DNA polymerase ζ (Pol ζ), is indispensable for translesion DNA synthesis, which protects cells from deleterious DNA lesions resulting from various intrinsic and environmental sources. However, REV3L lacks a proofreading exonuclease activity and consequently bypasses DNA lesions at the expense of increased mutations, which poses a severe threat to genome stability. Here we report a site-specific proteolytic event of human REV3L. We show that REV3L is cleaved by a threonine aspartase, Taspase1 (TASP1), to generate an N-terminal 70-kDa fragment (N70) and a polypeptide carrying the C-terminal polymerase catalytic domain in human cells. Strikingly, such a post-translational cleavage event plays a vital role in controlling REV3L stability by preventing ubiquitination and proteasome-mediated degradation of REV3L. Indicative of the biological importance of the above REV3L post-translational processing, cellular responses to UV and cisplatin-induced DNA lesions are markedly impaired in human HCT116 cell derivatives bearing defined point mutations in the endogenous REV3L gene that compromise REV3L cleavage. These findings establish a new paradigm in modulating the abundance of REV3L through site-specific proteolysis in human cells.
format Online
Article
Text
id pubmed-7144948
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-71449482020-04-13 Site-specific proteolytic cleavage prevents ubiquitination and degradation of human REV3L, the catalytic subunit of DNA polymerase ζ Wang, Fengting Li, Pan Shao, Yuan Li, Yanyan Zhang, Kai Li, Miaomiao Wang, Rong Zheng, Shuo Wang, Yingying Song, Sen Feng, Shiguo Liu, Fei Xiao, Wei Li, Xialu Nucleic Acids Res Genome Integrity, Repair and Replication REV3L, the catalytic subunit of DNA polymerase ζ (Pol ζ), is indispensable for translesion DNA synthesis, which protects cells from deleterious DNA lesions resulting from various intrinsic and environmental sources. However, REV3L lacks a proofreading exonuclease activity and consequently bypasses DNA lesions at the expense of increased mutations, which poses a severe threat to genome stability. Here we report a site-specific proteolytic event of human REV3L. We show that REV3L is cleaved by a threonine aspartase, Taspase1 (TASP1), to generate an N-terminal 70-kDa fragment (N70) and a polypeptide carrying the C-terminal polymerase catalytic domain in human cells. Strikingly, such a post-translational cleavage event plays a vital role in controlling REV3L stability by preventing ubiquitination and proteasome-mediated degradation of REV3L. Indicative of the biological importance of the above REV3L post-translational processing, cellular responses to UV and cisplatin-induced DNA lesions are markedly impaired in human HCT116 cell derivatives bearing defined point mutations in the endogenous REV3L gene that compromise REV3L cleavage. These findings establish a new paradigm in modulating the abundance of REV3L through site-specific proteolysis in human cells. Oxford University Press 2020-04-17 2020-02-17 /pmc/articles/PMC7144948/ /pubmed/32064513 http://dx.doi.org/10.1093/nar/gkaa096 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Genome Integrity, Repair and Replication
Wang, Fengting
Li, Pan
Shao, Yuan
Li, Yanyan
Zhang, Kai
Li, Miaomiao
Wang, Rong
Zheng, Shuo
Wang, Yingying
Song, Sen
Feng, Shiguo
Liu, Fei
Xiao, Wei
Li, Xialu
Site-specific proteolytic cleavage prevents ubiquitination and degradation of human REV3L, the catalytic subunit of DNA polymerase ζ
title Site-specific proteolytic cleavage prevents ubiquitination and degradation of human REV3L, the catalytic subunit of DNA polymerase ζ
title_full Site-specific proteolytic cleavage prevents ubiquitination and degradation of human REV3L, the catalytic subunit of DNA polymerase ζ
title_fullStr Site-specific proteolytic cleavage prevents ubiquitination and degradation of human REV3L, the catalytic subunit of DNA polymerase ζ
title_full_unstemmed Site-specific proteolytic cleavage prevents ubiquitination and degradation of human REV3L, the catalytic subunit of DNA polymerase ζ
title_short Site-specific proteolytic cleavage prevents ubiquitination and degradation of human REV3L, the catalytic subunit of DNA polymerase ζ
title_sort site-specific proteolytic cleavage prevents ubiquitination and degradation of human rev3l, the catalytic subunit of dna polymerase ζ
topic Genome Integrity, Repair and Replication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144948/
https://www.ncbi.nlm.nih.gov/pubmed/32064513
http://dx.doi.org/10.1093/nar/gkaa096
work_keys_str_mv AT wangfengting sitespecificproteolyticcleavagepreventsubiquitinationanddegradationofhumanrev3lthecatalyticsubunitofdnapolymerasez
AT lipan sitespecificproteolyticcleavagepreventsubiquitinationanddegradationofhumanrev3lthecatalyticsubunitofdnapolymerasez
AT shaoyuan sitespecificproteolyticcleavagepreventsubiquitinationanddegradationofhumanrev3lthecatalyticsubunitofdnapolymerasez
AT liyanyan sitespecificproteolyticcleavagepreventsubiquitinationanddegradationofhumanrev3lthecatalyticsubunitofdnapolymerasez
AT zhangkai sitespecificproteolyticcleavagepreventsubiquitinationanddegradationofhumanrev3lthecatalyticsubunitofdnapolymerasez
AT limiaomiao sitespecificproteolyticcleavagepreventsubiquitinationanddegradationofhumanrev3lthecatalyticsubunitofdnapolymerasez
AT wangrong sitespecificproteolyticcleavagepreventsubiquitinationanddegradationofhumanrev3lthecatalyticsubunitofdnapolymerasez
AT zhengshuo sitespecificproteolyticcleavagepreventsubiquitinationanddegradationofhumanrev3lthecatalyticsubunitofdnapolymerasez
AT wangyingying sitespecificproteolyticcleavagepreventsubiquitinationanddegradationofhumanrev3lthecatalyticsubunitofdnapolymerasez
AT songsen sitespecificproteolyticcleavagepreventsubiquitinationanddegradationofhumanrev3lthecatalyticsubunitofdnapolymerasez
AT fengshiguo sitespecificproteolyticcleavagepreventsubiquitinationanddegradationofhumanrev3lthecatalyticsubunitofdnapolymerasez
AT liufei sitespecificproteolyticcleavagepreventsubiquitinationanddegradationofhumanrev3lthecatalyticsubunitofdnapolymerasez
AT xiaowei sitespecificproteolyticcleavagepreventsubiquitinationanddegradationofhumanrev3lthecatalyticsubunitofdnapolymerasez
AT lixialu sitespecificproteolyticcleavagepreventsubiquitinationanddegradationofhumanrev3lthecatalyticsubunitofdnapolymerasez