Cargando…

The Status of Advanced Imaging Techniques for Optical Biopsy of Colonic Polyps

The progressive miniaturization of photonic components presents the opportunity to obtain unprecedented microscopic images of colonic polyps in real time during endoscopy. This information has the potential to act as “optical biopsy” to aid clinical decision-making, including the possibility of adop...

Descripción completa

Detalles Bibliográficos
Autores principales: Glover, Ben, Teare, Julian, Patel, Nisha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145035/
https://www.ncbi.nlm.nih.gov/pubmed/32352708
http://dx.doi.org/10.14309/ctg.0000000000000130
Descripción
Sumario:The progressive miniaturization of photonic components presents the opportunity to obtain unprecedented microscopic images of colonic polyps in real time during endoscopy. This information has the potential to act as “optical biopsy” to aid clinical decision-making, including the possibility of adopting new paradigms such as a “resect and discard” approach for low-risk lesions. The technologies discussed in this review include confocal laser endomicroscopy, optical coherence tomography, multiphoton microscopy, Raman spectroscopy, and hyperspectral imaging. These are in different stages of development and clinical readiness, but all show the potential to produce reliable in vivo discrimination of different tissue types. A structured literature search of the imaging techniques for colorectal polyps has been conducted. The significant developments in endoscopic imaging were identified for each modality, and the status of current development was discussed. Of the advanced imaging techniques discussed, confocal laser endomicroscopy is in clinical use and, under optimal conditions with an experienced operator, can provide accurate histological assessment of tissue. The remaining techniques show potential for incorporation into endoscopic equipment and practice, although further component development is needed, followed by robust prospective validation of accuracy. Optical coherence tomography illustrates tissue “texture” well and gives good assessment of mucosal thickness and layers. Multiphoton microscopy produces high-resolution images at a subcellular resolution. Raman spectroscopy and hyperspectral imaging are less developed endoscopically but provide a tissue “fingerprint” which can distinguish between tissue types. Molecular imaging may become a powerful adjunct to other techniques, with its ability to precisely label specific molecules within tissue and thereby enhance imaging.