Cargando…
Advancing Liquid Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Toward Ultrahigh-Throughput Analysis
[Image: see text] Label-free high-throughput screening using mass spectrometry has the potential to provide rapid large-scale sample analysis at a speed of more than one sample per second. Such speed is important for compound library, assay and future clinical screening of millions of samples within...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145281/ https://www.ncbi.nlm.nih.gov/pubmed/31967792 http://dx.doi.org/10.1021/acs.analchem.9b05202 |
Sumario: | [Image: see text] Label-free high-throughput screening using mass spectrometry has the potential to provide rapid large-scale sample analysis at a speed of more than one sample per second. Such speed is important for compound library, assay and future clinical screening of millions of samples within a reasonable time frame. Herein, we present a liquid atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) setup for high-throughput large-scale sample analysis (>5 samples per second) for three substance classes (peptides, antibiotics, and lipids). Liquid support matrices (LSM) were used for the analysis of standard substances as well as complex biological fluids (milk). Throughput and analytical robustness were mainly dependent on the complexity of the sample composition and the current limitations of the commercial hardware. However, the ultimate limits of liquid AP-MALDI in sample throughput can be conservatively estimated to be beyond 10–20 samples per second. This level of analytical speed is highly competitive compared with other label-free MS methods, including electrospray ionization and solid state MALDI, as well as MS methods using multiplexing by labeling, which in principle can also be used in combination with liquid AP-MALDI MS. |
---|