Cargando…
Complementary Metal–Oxide–Semiconductor Potentiometric Field-Effect Transistor Array Platform Using Sensor Learning for Multi-ion Imaging
[Image: see text] This work describes an array of 1024 ion-sensitive field-effect transistors (ISFETs) using sensor-learning techniques to perform multi-ion imaging for concurrent detection of potassium, sodium, calcium, and hydrogen. Analyte-specific ionophore membranes are deposited on the surface...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145285/ https://www.ncbi.nlm.nih.gov/pubmed/32142259 http://dx.doi.org/10.1021/acs.analchem.9b05836 |
_version_ | 1783519973537218560 |
---|---|
author | Moser, Nicolas Leong, Chi Leng Hu, Yuanqi Cicatiello, Chiara Gowers, Sally Boutelle, Martyn Georgiou, Pantelis |
author_facet | Moser, Nicolas Leong, Chi Leng Hu, Yuanqi Cicatiello, Chiara Gowers, Sally Boutelle, Martyn Georgiou, Pantelis |
author_sort | Moser, Nicolas |
collection | PubMed |
description | [Image: see text] This work describes an array of 1024 ion-sensitive field-effect transistors (ISFETs) using sensor-learning techniques to perform multi-ion imaging for concurrent detection of potassium, sodium, calcium, and hydrogen. Analyte-specific ionophore membranes are deposited on the surface of the ISFET array chip, yielding pixels with quasi-Nernstian sensitivity to K(+), Na(+), or Ca(2+). Uncoated pixels display pH sensitivity from the standard Si(3)N(4) passivation layer. The platform is then trained by inducing a change in single-ion concentration and measuring the responses of all pixels. Sensor learning relies on offline training algorithms including k-means clustering and density-based spatial clustering of applications with noise to yield membrane mapping and sensitivity of each pixel to target electrolytes. We demonstrate multi-ion imaging with an average error of 3.7% (K(+)), 4.6% (Na(+)), and 1.8% (pH) for each ion, respectively, while Ca(2+) incurs a larger error of 24.2% and hence is included to demonstrate versatility. We validate the platform with a brain dialysate fluid sample and demonstrate reading by comparing with a gold-standard spectrometry technique. |
format | Online Article Text |
id | pubmed-7145285 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American
Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-71452852020-04-10 Complementary Metal–Oxide–Semiconductor Potentiometric Field-Effect Transistor Array Platform Using Sensor Learning for Multi-ion Imaging Moser, Nicolas Leong, Chi Leng Hu, Yuanqi Cicatiello, Chiara Gowers, Sally Boutelle, Martyn Georgiou, Pantelis Anal Chem [Image: see text] This work describes an array of 1024 ion-sensitive field-effect transistors (ISFETs) using sensor-learning techniques to perform multi-ion imaging for concurrent detection of potassium, sodium, calcium, and hydrogen. Analyte-specific ionophore membranes are deposited on the surface of the ISFET array chip, yielding pixels with quasi-Nernstian sensitivity to K(+), Na(+), or Ca(2+). Uncoated pixels display pH sensitivity from the standard Si(3)N(4) passivation layer. The platform is then trained by inducing a change in single-ion concentration and measuring the responses of all pixels. Sensor learning relies on offline training algorithms including k-means clustering and density-based spatial clustering of applications with noise to yield membrane mapping and sensitivity of each pixel to target electrolytes. We demonstrate multi-ion imaging with an average error of 3.7% (K(+)), 4.6% (Na(+)), and 1.8% (pH) for each ion, respectively, while Ca(2+) incurs a larger error of 24.2% and hence is included to demonstrate versatility. We validate the platform with a brain dialysate fluid sample and demonstrate reading by comparing with a gold-standard spectrometry technique. American Chemical Society 2020-03-06 2020-04-07 /pmc/articles/PMC7145285/ /pubmed/32142259 http://dx.doi.org/10.1021/acs.analchem.9b05836 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Moser, Nicolas Leong, Chi Leng Hu, Yuanqi Cicatiello, Chiara Gowers, Sally Boutelle, Martyn Georgiou, Pantelis Complementary Metal–Oxide–Semiconductor Potentiometric Field-Effect Transistor Array Platform Using Sensor Learning for Multi-ion Imaging |
title | Complementary Metal–Oxide–Semiconductor
Potentiometric Field-Effect Transistor Array Platform Using Sensor
Learning for Multi-ion Imaging |
title_full | Complementary Metal–Oxide–Semiconductor
Potentiometric Field-Effect Transistor Array Platform Using Sensor
Learning for Multi-ion Imaging |
title_fullStr | Complementary Metal–Oxide–Semiconductor
Potentiometric Field-Effect Transistor Array Platform Using Sensor
Learning for Multi-ion Imaging |
title_full_unstemmed | Complementary Metal–Oxide–Semiconductor
Potentiometric Field-Effect Transistor Array Platform Using Sensor
Learning for Multi-ion Imaging |
title_short | Complementary Metal–Oxide–Semiconductor
Potentiometric Field-Effect Transistor Array Platform Using Sensor
Learning for Multi-ion Imaging |
title_sort | complementary metal–oxide–semiconductor
potentiometric field-effect transistor array platform using sensor
learning for multi-ion imaging |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145285/ https://www.ncbi.nlm.nih.gov/pubmed/32142259 http://dx.doi.org/10.1021/acs.analchem.9b05836 |
work_keys_str_mv | AT mosernicolas complementarymetaloxidesemiconductorpotentiometricfieldeffecttransistorarrayplatformusingsensorlearningformultiionimaging AT leongchileng complementarymetaloxidesemiconductorpotentiometricfieldeffecttransistorarrayplatformusingsensorlearningformultiionimaging AT huyuanqi complementarymetaloxidesemiconductorpotentiometricfieldeffecttransistorarrayplatformusingsensorlearningformultiionimaging AT cicatiellochiara complementarymetaloxidesemiconductorpotentiometricfieldeffecttransistorarrayplatformusingsensorlearningformultiionimaging AT gowerssally complementarymetaloxidesemiconductorpotentiometricfieldeffecttransistorarrayplatformusingsensorlearningformultiionimaging AT boutellemartyn complementarymetaloxidesemiconductorpotentiometricfieldeffecttransistorarrayplatformusingsensorlearningformultiionimaging AT georgioupantelis complementarymetaloxidesemiconductorpotentiometricfieldeffecttransistorarrayplatformusingsensorlearningformultiionimaging |