Cargando…

Complementary Metal–Oxide–Semiconductor Potentiometric Field-Effect Transistor Array Platform Using Sensor Learning for Multi-ion Imaging

[Image: see text] This work describes an array of 1024 ion-sensitive field-effect transistors (ISFETs) using sensor-learning techniques to perform multi-ion imaging for concurrent detection of potassium, sodium, calcium, and hydrogen. Analyte-specific ionophore membranes are deposited on the surface...

Descripción completa

Detalles Bibliográficos
Autores principales: Moser, Nicolas, Leong, Chi Leng, Hu, Yuanqi, Cicatiello, Chiara, Gowers, Sally, Boutelle, Martyn, Georgiou, Pantelis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145285/
https://www.ncbi.nlm.nih.gov/pubmed/32142259
http://dx.doi.org/10.1021/acs.analchem.9b05836
_version_ 1783519973537218560
author Moser, Nicolas
Leong, Chi Leng
Hu, Yuanqi
Cicatiello, Chiara
Gowers, Sally
Boutelle, Martyn
Georgiou, Pantelis
author_facet Moser, Nicolas
Leong, Chi Leng
Hu, Yuanqi
Cicatiello, Chiara
Gowers, Sally
Boutelle, Martyn
Georgiou, Pantelis
author_sort Moser, Nicolas
collection PubMed
description [Image: see text] This work describes an array of 1024 ion-sensitive field-effect transistors (ISFETs) using sensor-learning techniques to perform multi-ion imaging for concurrent detection of potassium, sodium, calcium, and hydrogen. Analyte-specific ionophore membranes are deposited on the surface of the ISFET array chip, yielding pixels with quasi-Nernstian sensitivity to K(+), Na(+), or Ca(2+). Uncoated pixels display pH sensitivity from the standard Si(3)N(4) passivation layer. The platform is then trained by inducing a change in single-ion concentration and measuring the responses of all pixels. Sensor learning relies on offline training algorithms including k-means clustering and density-based spatial clustering of applications with noise to yield membrane mapping and sensitivity of each pixel to target electrolytes. We demonstrate multi-ion imaging with an average error of 3.7% (K(+)), 4.6% (Na(+)), and 1.8% (pH) for each ion, respectively, while Ca(2+) incurs a larger error of 24.2% and hence is included to demonstrate versatility. We validate the platform with a brain dialysate fluid sample and demonstrate reading by comparing with a gold-standard spectrometry technique.
format Online
Article
Text
id pubmed-7145285
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-71452852020-04-10 Complementary Metal–Oxide–Semiconductor Potentiometric Field-Effect Transistor Array Platform Using Sensor Learning for Multi-ion Imaging Moser, Nicolas Leong, Chi Leng Hu, Yuanqi Cicatiello, Chiara Gowers, Sally Boutelle, Martyn Georgiou, Pantelis Anal Chem [Image: see text] This work describes an array of 1024 ion-sensitive field-effect transistors (ISFETs) using sensor-learning techniques to perform multi-ion imaging for concurrent detection of potassium, sodium, calcium, and hydrogen. Analyte-specific ionophore membranes are deposited on the surface of the ISFET array chip, yielding pixels with quasi-Nernstian sensitivity to K(+), Na(+), or Ca(2+). Uncoated pixels display pH sensitivity from the standard Si(3)N(4) passivation layer. The platform is then trained by inducing a change in single-ion concentration and measuring the responses of all pixels. Sensor learning relies on offline training algorithms including k-means clustering and density-based spatial clustering of applications with noise to yield membrane mapping and sensitivity of each pixel to target electrolytes. We demonstrate multi-ion imaging with an average error of 3.7% (K(+)), 4.6% (Na(+)), and 1.8% (pH) for each ion, respectively, while Ca(2+) incurs a larger error of 24.2% and hence is included to demonstrate versatility. We validate the platform with a brain dialysate fluid sample and demonstrate reading by comparing with a gold-standard spectrometry technique. American Chemical Society 2020-03-06 2020-04-07 /pmc/articles/PMC7145285/ /pubmed/32142259 http://dx.doi.org/10.1021/acs.analchem.9b05836 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Moser, Nicolas
Leong, Chi Leng
Hu, Yuanqi
Cicatiello, Chiara
Gowers, Sally
Boutelle, Martyn
Georgiou, Pantelis
Complementary Metal–Oxide–Semiconductor Potentiometric Field-Effect Transistor Array Platform Using Sensor Learning for Multi-ion Imaging
title Complementary Metal–Oxide–Semiconductor Potentiometric Field-Effect Transistor Array Platform Using Sensor Learning for Multi-ion Imaging
title_full Complementary Metal–Oxide–Semiconductor Potentiometric Field-Effect Transistor Array Platform Using Sensor Learning for Multi-ion Imaging
title_fullStr Complementary Metal–Oxide–Semiconductor Potentiometric Field-Effect Transistor Array Platform Using Sensor Learning for Multi-ion Imaging
title_full_unstemmed Complementary Metal–Oxide–Semiconductor Potentiometric Field-Effect Transistor Array Platform Using Sensor Learning for Multi-ion Imaging
title_short Complementary Metal–Oxide–Semiconductor Potentiometric Field-Effect Transistor Array Platform Using Sensor Learning for Multi-ion Imaging
title_sort complementary metal–oxide–semiconductor potentiometric field-effect transistor array platform using sensor learning for multi-ion imaging
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145285/
https://www.ncbi.nlm.nih.gov/pubmed/32142259
http://dx.doi.org/10.1021/acs.analchem.9b05836
work_keys_str_mv AT mosernicolas complementarymetaloxidesemiconductorpotentiometricfieldeffecttransistorarrayplatformusingsensorlearningformultiionimaging
AT leongchileng complementarymetaloxidesemiconductorpotentiometricfieldeffecttransistorarrayplatformusingsensorlearningformultiionimaging
AT huyuanqi complementarymetaloxidesemiconductorpotentiometricfieldeffecttransistorarrayplatformusingsensorlearningformultiionimaging
AT cicatiellochiara complementarymetaloxidesemiconductorpotentiometricfieldeffecttransistorarrayplatformusingsensorlearningformultiionimaging
AT gowerssally complementarymetaloxidesemiconductorpotentiometricfieldeffecttransistorarrayplatformusingsensorlearningformultiionimaging
AT boutellemartyn complementarymetaloxidesemiconductorpotentiometricfieldeffecttransistorarrayplatformusingsensorlearningformultiionimaging
AT georgioupantelis complementarymetaloxidesemiconductorpotentiometricfieldeffecttransistorarrayplatformusingsensorlearningformultiionimaging