Cargando…

Barrier Properties and Characterizations of Poly(lactic Acid)/ZnO Nanocomposites

This study aimed to reinforce the barrier performance (i.e., oxygen–gas and water–vapor permeability) of poly(lactic acid) (PLA)-based films. Acetyltributylcitrate and zinc oxide nanoparticle (nano-ZnO), serving as plasticizer and nanofiller, respectively, were blended into a PLA matrix through a so...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Zhenya, Fan, Fangling, Chu, Zhuangzhuang, Fan, Chunli, Qin, Yuyue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145295/
https://www.ncbi.nlm.nih.gov/pubmed/32183008
http://dx.doi.org/10.3390/molecules25061310
Descripción
Sumario:This study aimed to reinforce the barrier performance (i.e., oxygen–gas and water–vapor permeability) of poly(lactic acid) (PLA)-based films. Acetyltributylcitrate and zinc oxide nanoparticle (nano-ZnO), serving as plasticizer and nanofiller, respectively, were blended into a PLA matrix through a solvent-volatilizing method. The structural, morphological, thermal, and mechanical performances were then studied. Scanning electron microscopic images showed a significant dispersion of nano-ZnO in PLA ternary systems with low nano-ZnO content. The interaction between PLA matrix and ZnO nanoparticles was further analyzed by Fourier-transform infrared spectroscopy. Wide-angle X-ray scattering spectroscopy demonstrated high compatibility between PLA matrix and ZnO nanoparticles. Mechanical property studies revealed good tensile strength and low flexibility. Differential scanning calorimetry curves proved that an amorphous structure mostly existed in PLA ternary systems. The improvements in barrier property and tensile strength indicated that the PLA/nano-ZnO composite films could be used for food packaging application.