Cargando…
TSEA-DB: a trait–tissue association map for human complex traits and diseases
Assessing the causal tissues of human traits and diseases is important for better interpreting trait-associated genetic variants, understanding disease etiology, and improving treatment strategies. Here, we present a reference database for trait-associated tissue specificity based on genome-wide ass...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145616/ https://www.ncbi.nlm.nih.gov/pubmed/31680168 http://dx.doi.org/10.1093/nar/gkz957 |
Sumario: | Assessing the causal tissues of human traits and diseases is important for better interpreting trait-associated genetic variants, understanding disease etiology, and improving treatment strategies. Here, we present a reference database for trait-associated tissue specificity based on genome-wide association study (GWAS) results, named Tissue-Specific Enrichment Analysis DataBase (TSEA-DB, available at https://bioinfo.uth.edu/TSEADB/). We collected GWAS summary statistics data for a wide range of human traits and diseases followed by rigorous quality control. The current version of TSEA-DB includes 4423 data sets from the UK Biobank (UKBB) and 596 from other resources (GWAS Catalog and literature mining), totaling 5019 unique GWAS data sets and 15 770 trait-associated gene sets. TSEA-DB aims to provide reference tissue(s) enriched with the genes from GWAS. To this end, we systematically performed a tissue-specific enrichment analysis using our recently developed tool deTS and gene expression profiles from two reference tissue panels: the GTEx panel (47 tissues) and the ENCODE panel (44 tissues). The comprehensive trait–tissue association results can be easily accessed, searched, visualized, analyzed, and compared across the studies and traits through our web site. TSEA-DB represents one of the many timely and comprehensive approaches in exploring human trait–tissue association. |
---|