Cargando…

Limited DNA Repair Gene Repertoire in Ascomycete Yeast Revealed by Comparative Genomics

Ascomycota is the largest phylogenetic group of fungi that includes species important to human health and wellbeing. DNA repair is important for fungal survival and genome evolution. Here, we describe a detailed comparative genomic analysis of DNA repair genes in Ascomycota. We determined the DNA re...

Descripción completa

Detalles Bibliográficos
Autores principales: Milo, Shira, Harari-Misgav, Reut, Hazkani-Covo, Einat, Covo, Shay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145719/
https://www.ncbi.nlm.nih.gov/pubmed/31693105
http://dx.doi.org/10.1093/gbe/evz242
Descripción
Sumario:Ascomycota is the largest phylogenetic group of fungi that includes species important to human health and wellbeing. DNA repair is important for fungal survival and genome evolution. Here, we describe a detailed comparative genomic analysis of DNA repair genes in Ascomycota. We determined the DNA repair gene repertoire in Taphrinomycotina, Saccharomycotina, Leotiomycetes, Sordariomycetes, Dothideomycetes, and Eurotiomycetes. The subphyla of yeasts, Saccharomycotina and Taphrinomycotina, have a smaller DNA repair gene repertoire comparing to Pezizomycotina. Some genes were absent from most, if not all, yeast species. To study the conservation of these genes in Pezizomycotina, we used the Gain Loss Mapping Engine algorithm that provides the expectations of gain or loss of genes given the tree topology. Genes that were absent from most of the species of Taphrinomycotina or Saccharomycotina showed lower conservation in Pezizomycotina. This suggests that the absence of some DNA repair in yeasts is not random; genes with a tendency to be lost in other classes are missing. We ranked the conservation of DNA repair genes in Ascomycota. We found that Rad51 and its paralogs were less conserved than other recombinational proteins, suggesting that there is a redundancy between Rad51 and its paralogs, at least in some species. Finally, based on the repertoire of UV repair genes, we found conditions that differentially kill the wine pathogen Brettanomyces bruxellensis and not Saccharomyces cerevisiae. In summary, our analysis provides testable hypotheses to the role of DNA repair proteins in the genome evolution of Ascomycota.