Cargando…
Nanofabrication of Isoporous Membranes for Cell Fractionation
Cell fractionations and other biological separations frequently require several steps. They could be much more effectively done by filtration, if isoporous membranes would be available with high pore density, and sharp pore size distribution in the micro- and nanoscale. We propose a combination of t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145805/ https://www.ncbi.nlm.nih.gov/pubmed/32273573 http://dx.doi.org/10.1038/s41598-020-62937-5 |
Sumario: | Cell fractionations and other biological separations frequently require several steps. They could be much more effectively done by filtration, if isoporous membranes would be available with high pore density, and sharp pore size distribution in the micro- and nanoscale. We propose a combination of two scalable methods, photolithography and dry reactive ion etching, to fabricate a series of polyester membranes with isopores of size 0.7 to 50 μm and high pore density with a demonstrated total area of 38.5 cm(2). The membranes have pore sizes in the micro- and submicro-range, and pore density 10-fold higher than track-etched analogues, which are the only commercially available isoporous polymeric films. Permeances of 220,000 L m(−2) h(−1)bar(−1) were measured with pore size 787 nm. The method does not require organic solvents and can be applied to many homopolymeric materials. The pore reduction from 2 to 0.7 μm was obtained by adding a step of chemical vapor deposition. The isoporous system was successfully demonstrated for the organelle fractionation of Arabidopsis homogenates and could be potentially extended to other biological fractionations. |
---|