Cargando…
Design of a Multiplexed Analyte Biosensor using Digital Barcoded Particles and Impedance Spectroscopy
Multiplexing allows quantifying multiple analytes in a single step, providing advantages over individual testing through shorter processing time, lower sample volume, and reduced cost per test. Currently, flow cytometry is the gold standard for biomedical multiplexing, but requires technical trainin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145859/ https://www.ncbi.nlm.nih.gov/pubmed/32273525 http://dx.doi.org/10.1038/s41598-020-62894-z |
_version_ | 1783520070353289216 |
---|---|
author | Prakash, Shreya Ashley, Brandon K. Doyle, Patrick S. Hassan, Umer |
author_facet | Prakash, Shreya Ashley, Brandon K. Doyle, Patrick S. Hassan, Umer |
author_sort | Prakash, Shreya |
collection | PubMed |
description | Multiplexing allows quantifying multiple analytes in a single step, providing advantages over individual testing through shorter processing time, lower sample volume, and reduced cost per test. Currently, flow cytometry is the gold standard for biomedical multiplexing, but requires technical training, extensive data processing, and expensive operational and capital costs. To solve this challenge, we designed digital barcoded particles and a microfluidic architecture for multiplexed analyte quantification. In this work, we simulate and model non-fluorescence-based microfluidic impedance detection with a single excitation and detection scheme using barcoded polymer microparticles. Our barcoded particles can be designed with specific coding regions and generate numerous distinct patterns enabling digital barcoding. We found that signals based on adhered microsphere position and relative orientation were evaluated and separated based on their associated electrical signatures and had a 7 µm microsphere limit of detection. Our proposed microfluidic system can enumerate micron-sized spheres in a single assay using barcoded particles of various configurations. As representation of blood cells, the microsphere concentrations may provide useful information on disease onset and progression. Such sensors may be used for diagnostic and management of common critical care diseases like sepsis, acute kidney injury, urinary tract infections, and HIV/AIDS. |
format | Online Article Text |
id | pubmed-7145859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-71458592020-04-15 Design of a Multiplexed Analyte Biosensor using Digital Barcoded Particles and Impedance Spectroscopy Prakash, Shreya Ashley, Brandon K. Doyle, Patrick S. Hassan, Umer Sci Rep Article Multiplexing allows quantifying multiple analytes in a single step, providing advantages over individual testing through shorter processing time, lower sample volume, and reduced cost per test. Currently, flow cytometry is the gold standard for biomedical multiplexing, but requires technical training, extensive data processing, and expensive operational and capital costs. To solve this challenge, we designed digital barcoded particles and a microfluidic architecture for multiplexed analyte quantification. In this work, we simulate and model non-fluorescence-based microfluidic impedance detection with a single excitation and detection scheme using barcoded polymer microparticles. Our barcoded particles can be designed with specific coding regions and generate numerous distinct patterns enabling digital barcoding. We found that signals based on adhered microsphere position and relative orientation were evaluated and separated based on their associated electrical signatures and had a 7 µm microsphere limit of detection. Our proposed microfluidic system can enumerate micron-sized spheres in a single assay using barcoded particles of various configurations. As representation of blood cells, the microsphere concentrations may provide useful information on disease onset and progression. Such sensors may be used for diagnostic and management of common critical care diseases like sepsis, acute kidney injury, urinary tract infections, and HIV/AIDS. Nature Publishing Group UK 2020-04-09 /pmc/articles/PMC7145859/ /pubmed/32273525 http://dx.doi.org/10.1038/s41598-020-62894-z Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Prakash, Shreya Ashley, Brandon K. Doyle, Patrick S. Hassan, Umer Design of a Multiplexed Analyte Biosensor using Digital Barcoded Particles and Impedance Spectroscopy |
title | Design of a Multiplexed Analyte Biosensor using Digital Barcoded Particles and Impedance Spectroscopy |
title_full | Design of a Multiplexed Analyte Biosensor using Digital Barcoded Particles and Impedance Spectroscopy |
title_fullStr | Design of a Multiplexed Analyte Biosensor using Digital Barcoded Particles and Impedance Spectroscopy |
title_full_unstemmed | Design of a Multiplexed Analyte Biosensor using Digital Barcoded Particles and Impedance Spectroscopy |
title_short | Design of a Multiplexed Analyte Biosensor using Digital Barcoded Particles and Impedance Spectroscopy |
title_sort | design of a multiplexed analyte biosensor using digital barcoded particles and impedance spectroscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145859/ https://www.ncbi.nlm.nih.gov/pubmed/32273525 http://dx.doi.org/10.1038/s41598-020-62894-z |
work_keys_str_mv | AT prakashshreya designofamultiplexedanalytebiosensorusingdigitalbarcodedparticlesandimpedancespectroscopy AT ashleybrandonk designofamultiplexedanalytebiosensorusingdigitalbarcodedparticlesandimpedancespectroscopy AT doylepatricks designofamultiplexedanalytebiosensorusingdigitalbarcodedparticlesandimpedancespectroscopy AT hassanumer designofamultiplexedanalytebiosensorusingdigitalbarcodedparticlesandimpedancespectroscopy |