Cargando…
Modern Soft-Sensing Modeling Methods for Fermentation Processes
For effective monitoring and control of the fermentation process, an accurate real-time measurement of important variables is necessary. These variables are very hard to measure in real-time due to constraints such as the time-varying, nonlinearity, strong coupling, and complex mechanism of the ferm...
Autores principales: | Zhu, Xianglin, Rehman, Khalil Ur, Wang, Bo, Shahzad, Muhammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146123/ https://www.ncbi.nlm.nih.gov/pubmed/32210053 http://dx.doi.org/10.3390/s20061771 |
Ejemplares similares
-
Soft-sensor modeling for l-lysine fermentation process based on hybrid ICS-MLSSVM
por: Wang, Bo, et al.
Publicado: (2020) -
A Non-linear Model Predictive Control Based on Grey-Wolf Optimization Using Least-Square Support Vector Machine for Product Concentration Control in l-Lysine Fermentation
por: Wang, Bo, et al.
Publicado: (2020) -
Soft - sensing modeling based on ABC - MLSSVM inversion for marine low - temperature alkaline protease MP fermentation process
por: Wang, Bo, et al.
Publicado: (2020) -
Study on Multi-Model Soft Sensor Modeling Method and Its Model Optimization for the Fermentation Process of Pichia pastoris
por: Wang, Bo, et al.
Publicado: (2021) -
Soft Sensor Modeling Method for the Marine Lysozyme Fermentation Process Based on ISOA-GPR Weighted Ensemble Learning
por: Lu, Na, et al.
Publicado: (2023)