Cargando…
Deep Active Learning for Surface Defect Detection
Most of the current object detection approaches deliver competitive results with an assumption that a large number of labeled data are generally available and can be fed into a deep network at once. However, due to expensive labeling efforts, it is difficult to deploy the object detection systems in...
Autores principales: | Lv, Xiaoming, Duan, Fajie, Jiang, Jia-Jia, Fu, Xiao, Gan, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146140/ https://www.ncbi.nlm.nih.gov/pubmed/32188066 http://dx.doi.org/10.3390/s20061650 |
Ejemplares similares
-
Deep Metallic Surface Defect Detection: The New Benchmark and Detection Network
por: Lv, Xiaoming, et al.
Publicado: (2020) -
A Particleboard Surface Defect Detection Method Research Based on the Deep Learning Algorithm
por: Zhao, Ziyu, et al.
Publicado: (2022) -
A Systematic Review on Deep Learning with CNNs Applied to Surface Defect Detection
por: Cumbajin, Esteban, et al.
Publicado: (2023) -
Deep learning based atomic defect detection framework for two-dimensional materials
por: Chen, Fu-Xiang Rikudo, et al.
Publicado: (2023) -
Automatic Detection and Identification of Defects by Deep Learning Algorithms from Pulsed Thermography Data
por: Fang, Qiang, et al.
Publicado: (2023)