Cargando…
Using Deep Learning to Forecast Maritime Vessel Flows
Forecasting vessel flows is important to the development of intelligent transportation systems in the maritime field, as real-time and accurate traffic information has favorable potential in helping a maritime authority to alleviate congestion, mitigate emission of GHG (greenhouse gases) and enhance...
Autores principales: | Zhou, Xiangyu, Liu, Zhengjiang, Wang, Fengwu, Xie, Yajuan, Zhang, Xuexi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146195/ https://www.ncbi.nlm.nih.gov/pubmed/32235812 http://dx.doi.org/10.3390/s20061761 |
Ejemplares similares
-
Maritime route and vessel tracklet dataset for vessel-to-route association
por: Iphar, Clément, et al.
Publicado: (2022) -
Spatiotemporal dynamic network for regional maritime vessel flow prediction amid COVID-19
por: Zhao, Chuan, et al.
Publicado: (2022) -
Probabilistic Maritime Trajectory Prediction in Complex Scenarios Using Deep Learning
por: Sørensen, Kristian Aalling, et al.
Publicado: (2022) -
Maritime governance: speed, flow, form process
por: Roe, Michael
Publicado: (2016) -
Maritime sector at verge of change: learning and competence needs in Finnish maritime cluster
por: Kilpi, Vesa, et al.
Publicado: (2021)