Cargando…
Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network
Landslide susceptibility prediction (LSP) modeling is an important and challenging problem. Landslide features are generally uncorrelated or nonlinearly correlated, resulting in limited LSP performance when leveraging conventional machine learning models. In this study, a deep-learning-based model u...
Autores principales: | Zhu, Li, Huang, Lianghao, Fan, Linyu, Huang, Jinsong, Huang, Faming, Chen, Jiawu, Zhang, Zihe, Wang, Yuhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146231/ https://www.ncbi.nlm.nih.gov/pubmed/32178235 http://dx.doi.org/10.3390/s20061576 |
Ejemplares similares
-
Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment
por: Nhu, Viet-Ha, et al.
Publicado: (2020) -
Improving GIS-Based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing and Machine Learning
por: Lai, Jhe-Syuan, et al.
Publicado: (2019) -
A web-based GPS system for displacement monitoring and failure mechanism analysis of reservoir landslide
por: Li, Yuanyao, et al.
Publicado: (2017) -
Parallelized Dilate Algorithm for Remote Sensing Image
por: Zhang, Suli, et al.
Publicado: (2014) -
Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment
por: Shahabi, Himan, et al.
Publicado: (2015)