Cargando…

Stearoyl-CoA Desaturase-1 Enzyme Inhibition by Grape Skin Extracts Affects Membrane Fluidity in Human Colon Cancer Cell Lines

The polyphenolic compounds present in grape extracts have chemopreventive and anticancer properties. Here, we studied the ability of two grape skin extracts (GSEs), Autumn Royal and Egnatia, to influence the cell motility and membrane fluidity regulated by the enzyme Stearoyl-CoA desaturase-1 (SCD1)...

Descripción completa

Detalles Bibliográficos
Autores principales: Tutino, Valeria, Gigante, Isabella, Scavo, Maria Principia, Refolo, Maria Grazia, De Nunzio, Valentina, Milella, Rosa Anna, Caruso, Maria Gabriella, Notarnicola, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146266/
https://www.ncbi.nlm.nih.gov/pubmed/32143529
http://dx.doi.org/10.3390/nu12030693
Descripción
Sumario:The polyphenolic compounds present in grape extracts have chemopreventive and anticancer properties. Here, we studied the ability of two grape skin extracts (GSEs), Autumn Royal and Egnatia, to influence the cell motility and membrane fluidity regulated by the enzyme Stearoyl-CoA desaturase-1 (SCD1) which increases with the cancer aggressiveness. Caco2 and SW480 human colon cancer cell lines were treated with increasing concentrations of GSEs to evaluate cell proliferation and motility. SCD1 levels were evaluated in both treated cell lines, by membrane lipidomic analysis conducted by gas chromatography. The expression levels of SCD1 and other factors involved in the reorganization of the cytoskeleton and focal adhesions were assessed by Real-time PCR, Western Blotting, and Immunofluorescence staining. High-performance liquid chromatography (HPLC) analyses were performed to determine the phenolic composition in the GSEs, finding them more expressed in Autumn Royal than in Egnatia. Both treatments reduced the levels of SCD1, phospho-Rac1/Cdc42/Rac1/Cdc42 ratio, Cofilin, Vimentin, and phospho-Paxillin especially in Caco2 compared to SW480, showing a different behavior of the two cell lines to these natural compounds. Our findings show that GSEs block the cell migration and membrane fluidity through a new mechanism of action involving structural cellular components.