Cargando…

Double-Constraint Inpainting Model of a Single-Depth Image

In real applications, obtained depth images are incomplete; therefore, depth image inpainting is studied here. A novel model that is characterised by both a low-rank structure and nonlocal self-similarity is proposed. As a double constraint, the low-rank structure and nonlocal self-similarity can fu...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Wu, Zun, Li, Yong, Liu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146313/
https://www.ncbi.nlm.nih.gov/pubmed/32213982
http://dx.doi.org/10.3390/s20061797
Descripción
Sumario:In real applications, obtained depth images are incomplete; therefore, depth image inpainting is studied here. A novel model that is characterised by both a low-rank structure and nonlocal self-similarity is proposed. As a double constraint, the low-rank structure and nonlocal self-similarity can fully exploit the features of single-depth images to complete the inpainting task. First, according to the characteristics of pixel values, we divide the image into blocks, and similar block groups and three-dimensional arrangements are then formed. Then, the variable splitting technique is applied to effectively divide the inpainting problem into the sub-problems of the low-rank constraint and nonlocal self-similarity constraint. Finally, different strategies are used to solve different sub-problems, resulting in greater reliability. Experiments show that the proposed algorithm attains state-of-the-art performance.