Cargando…
Comparison of CNN Algorithms on Hyperspectral Image Classification in Agricultural Lands
Several versions of convolutional neural network (CNN) were developed to classify hyperspectral images (HSIs) of agricultural lands, including 1D-CNN with pixelwise spectral data, 1D-CNN with selected bands, 1D-CNN with spectral-spatial features and 2D-CNN with principal components. The HSI data of...
Autores principales: | Hsieh, Tien-Heng, Kiang, Jean-Fu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146316/ https://www.ncbi.nlm.nih.gov/pubmed/32244929 http://dx.doi.org/10.3390/s20061734 |
Ejemplares similares
-
Hyperspectral imaging combined with CNN for maize variety identification
por: Zhang, Fu, et al.
Publicado: (2023) -
Dual-Coupled CNN-GCN-Based Classification for Hyperspectral and LiDAR Data
por: Wang, Lei, et al.
Publicado: (2022) -
Hyperspectral Image Classification Based on Improved Rotation Forest Algorithm
por: Lv, Fei, et al.
Publicado: (2018) -
Environmental and Geographical (EG) Image Classification Using FLIM and CNN Algorithms
por: Ajay, P., et al.
Publicado: (2022) -
Regional Inversion of Soil Heavy Metal Cr Content in Agricultural Land Using Zhuhai-1 Hyperspectral Images
por: Guo, Hongxu, et al.
Publicado: (2023)