Cargando…

Single Image De-Raining via Improved Generative Adversarial Nets †

Capturing images under rainy days degrades image visual quality and affects analysis tasks, such as object detection and classification. Therefore, image de-raining has attracted a lot of attention in recent years. In this paper, an improved generative adversarial network for single image de-raining...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Yi, Nie, Mengzhen, Li, Shichao, Li, Chuankun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146324/
https://www.ncbi.nlm.nih.gov/pubmed/32178420
http://dx.doi.org/10.3390/s20061591
Descripción
Sumario:Capturing images under rainy days degrades image visual quality and affects analysis tasks, such as object detection and classification. Therefore, image de-raining has attracted a lot of attention in recent years. In this paper, an improved generative adversarial network for single image de-raining is proposed. According to the principles of divide-and-conquer, we divide an image de-raining task into rain locating, rain removing, and detail refining sub-tasks. A multi-stream DenseNet, termed as Rain Estimation Network, is proposed to estimate the rain location map. A Generative Adversarial Network is proposed to remove the rain streaks. A Refinement Network is proposed to refine the details. These three models accomplish rain locating, rain removing, and detail refining sub-tasks, respectively. Experiments on two synthetic datasets and real world images demonstrate that the proposed method outperforms state-of-the-art de-raining studies in both objective and subjective measurements.