Cargando…

Triterpene Acids of Loquat Leaf Improve Inflammation in Cigarette Smoking Induced COPD by Regulating AMPK/Nrf2 and NFκB Pathways

Cigarette smoking (CS) is believed to be an important inducement in the pathological development of chronic obstructive pulmonary disease (COPD), a progressive lung disease. Loquat is an Asian evergreen tree commonly cultivated for its fruit. Its leaf has long been used as an important material for...

Descripción completa

Detalles Bibliográficos
Autores principales: Jian, Tunyu, Ding, Xiaoqin, Li, Jiawei, Wu, Yuexian, Ren, Bingru, Li, Jing, Lv, Han, Chen, Jian, Li, Weilin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146327/
https://www.ncbi.nlm.nih.gov/pubmed/32121228
http://dx.doi.org/10.3390/nu12030657
_version_ 1783520175536996352
author Jian, Tunyu
Ding, Xiaoqin
Li, Jiawei
Wu, Yuexian
Ren, Bingru
Li, Jing
Lv, Han
Chen, Jian
Li, Weilin
author_facet Jian, Tunyu
Ding, Xiaoqin
Li, Jiawei
Wu, Yuexian
Ren, Bingru
Li, Jing
Lv, Han
Chen, Jian
Li, Weilin
author_sort Jian, Tunyu
collection PubMed
description Cigarette smoking (CS) is believed to be an important inducement in the pathological development of chronic obstructive pulmonary disease (COPD), a progressive lung disease. Loquat is an Asian evergreen tree commonly cultivated for its fruit. Its leaf has long been used as an important material for both functional and medicinal applications in the treatment of lung disease in China and Japan. As the principal functional components of loquat leaf, triterpene acids (TAs) have shown notable anti-inflammatory activity. However, their protective activity and underlying action of mechanism on CS-induced COPD inflammation are not yet well understood. In the present study, male C57BL/6 mice were challenged with CS for 12 weeks, and from the seventh week of CS exposure, mice were fed with TAs (50 and 100 mg/kg) for 6 weeks to figure out the therapeutic effect and molecular mechanism of TAs in CS-induced COPD inflammation. The results demonstrate that TA suppressed the lung histological changes in CS-exposed mice, as evidenced by the diminished generation of pro-inflammatory cytokines, including interleukin 1β (IL-1β), IL-2, IL-6, and tumor necrosis factor α (TNF-α). Moreover, TA treatment significantly inhibited the malondialdehyde (MDA) level and increased superoxide dismutase (SOD) activity. In addition, TAs increased the phosphorylation of AMP-activated protein kinase (AMPK) and nuclear factor erythroid-2-related factor-2 (Nrf2) expression level, while inhibiting phosphorylation of nuclear factor kappa B (NFκB) and inducible nitric oxide synthase (iNOS) expression in CS-induced COPD. In summary, our study reveals a protective effect and putative mechanism of TA action involving the inhibition of inflammation by regulating AMPK/Nrf2 and NFκB pathways. Our findings suggest that TAs could be considered as a promising functional material for treating CS-induced COPD.
format Online
Article
Text
id pubmed-7146327
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-71463272020-04-15 Triterpene Acids of Loquat Leaf Improve Inflammation in Cigarette Smoking Induced COPD by Regulating AMPK/Nrf2 and NFκB Pathways Jian, Tunyu Ding, Xiaoqin Li, Jiawei Wu, Yuexian Ren, Bingru Li, Jing Lv, Han Chen, Jian Li, Weilin Nutrients Article Cigarette smoking (CS) is believed to be an important inducement in the pathological development of chronic obstructive pulmonary disease (COPD), a progressive lung disease. Loquat is an Asian evergreen tree commonly cultivated for its fruit. Its leaf has long been used as an important material for both functional and medicinal applications in the treatment of lung disease in China and Japan. As the principal functional components of loquat leaf, triterpene acids (TAs) have shown notable anti-inflammatory activity. However, their protective activity and underlying action of mechanism on CS-induced COPD inflammation are not yet well understood. In the present study, male C57BL/6 mice were challenged with CS for 12 weeks, and from the seventh week of CS exposure, mice were fed with TAs (50 and 100 mg/kg) for 6 weeks to figure out the therapeutic effect and molecular mechanism of TAs in CS-induced COPD inflammation. The results demonstrate that TA suppressed the lung histological changes in CS-exposed mice, as evidenced by the diminished generation of pro-inflammatory cytokines, including interleukin 1β (IL-1β), IL-2, IL-6, and tumor necrosis factor α (TNF-α). Moreover, TA treatment significantly inhibited the malondialdehyde (MDA) level and increased superoxide dismutase (SOD) activity. In addition, TAs increased the phosphorylation of AMP-activated protein kinase (AMPK) and nuclear factor erythroid-2-related factor-2 (Nrf2) expression level, while inhibiting phosphorylation of nuclear factor kappa B (NFκB) and inducible nitric oxide synthase (iNOS) expression in CS-induced COPD. In summary, our study reveals a protective effect and putative mechanism of TA action involving the inhibition of inflammation by regulating AMPK/Nrf2 and NFκB pathways. Our findings suggest that TAs could be considered as a promising functional material for treating CS-induced COPD. MDPI 2020-02-28 /pmc/articles/PMC7146327/ /pubmed/32121228 http://dx.doi.org/10.3390/nu12030657 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jian, Tunyu
Ding, Xiaoqin
Li, Jiawei
Wu, Yuexian
Ren, Bingru
Li, Jing
Lv, Han
Chen, Jian
Li, Weilin
Triterpene Acids of Loquat Leaf Improve Inflammation in Cigarette Smoking Induced COPD by Regulating AMPK/Nrf2 and NFκB Pathways
title Triterpene Acids of Loquat Leaf Improve Inflammation in Cigarette Smoking Induced COPD by Regulating AMPK/Nrf2 and NFκB Pathways
title_full Triterpene Acids of Loquat Leaf Improve Inflammation in Cigarette Smoking Induced COPD by Regulating AMPK/Nrf2 and NFκB Pathways
title_fullStr Triterpene Acids of Loquat Leaf Improve Inflammation in Cigarette Smoking Induced COPD by Regulating AMPK/Nrf2 and NFκB Pathways
title_full_unstemmed Triterpene Acids of Loquat Leaf Improve Inflammation in Cigarette Smoking Induced COPD by Regulating AMPK/Nrf2 and NFκB Pathways
title_short Triterpene Acids of Loquat Leaf Improve Inflammation in Cigarette Smoking Induced COPD by Regulating AMPK/Nrf2 and NFκB Pathways
title_sort triterpene acids of loquat leaf improve inflammation in cigarette smoking induced copd by regulating ampk/nrf2 and nfκb pathways
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146327/
https://www.ncbi.nlm.nih.gov/pubmed/32121228
http://dx.doi.org/10.3390/nu12030657
work_keys_str_mv AT jiantunyu triterpeneacidsofloquatleafimproveinflammationincigarettesmokinginducedcopdbyregulatingampknrf2andnfkbpathways
AT dingxiaoqin triterpeneacidsofloquatleafimproveinflammationincigarettesmokinginducedcopdbyregulatingampknrf2andnfkbpathways
AT lijiawei triterpeneacidsofloquatleafimproveinflammationincigarettesmokinginducedcopdbyregulatingampknrf2andnfkbpathways
AT wuyuexian triterpeneacidsofloquatleafimproveinflammationincigarettesmokinginducedcopdbyregulatingampknrf2andnfkbpathways
AT renbingru triterpeneacidsofloquatleafimproveinflammationincigarettesmokinginducedcopdbyregulatingampknrf2andnfkbpathways
AT lijing triterpeneacidsofloquatleafimproveinflammationincigarettesmokinginducedcopdbyregulatingampknrf2andnfkbpathways
AT lvhan triterpeneacidsofloquatleafimproveinflammationincigarettesmokinginducedcopdbyregulatingampknrf2andnfkbpathways
AT chenjian triterpeneacidsofloquatleafimproveinflammationincigarettesmokinginducedcopdbyregulatingampknrf2andnfkbpathways
AT liweilin triterpeneacidsofloquatleafimproveinflammationincigarettesmokinginducedcopdbyregulatingampknrf2andnfkbpathways