Cargando…
Jellytoring: Real-Time Jellyfish Monitoring Based on Deep Learning Object Detection
During the past decades, the composition and distribution of marine species have changed due to multiple anthropogenic pressures. Monitoring these changes in a cost-effective manner is of high relevance to assess the environmental status and evaluate the effectiveness of management measures. In part...
Autores principales: | Martin-Abadal, Miguel, Ruiz-Frau, Ana, Hinz, Hilmar, Gonzalez-Cid, Yolanda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146330/ https://www.ncbi.nlm.nih.gov/pubmed/32204330 http://dx.doi.org/10.3390/s20061708 |
Ejemplares similares
-
The potential of Jellytoring 2.0 smart tool as a global jellyfish monitoring platform
por: Ruiz‐Frau, Ana, et al.
Publicado: (2022) -
Real-Time Pipe and Valve Characterisation and Mapping for Autonomous Underwater Intervention Tasks
por: Martin-Abadal, Miguel, et al.
Publicado: (2022) -
A Deep Learning-Based Workflow for Dendritic Spine Segmentation
por: Vidaurre-Gallart, Isabel, et al.
Publicado: (2022) -
Preference classes in society for coastal marine protected areas
por: Ruiz-Frau, Ana, et al.
Publicado: (2019) -
Real-Time Jellyfish Classification and Detection Based on Improved YOLOv3 Algorithm
por: Gao, Meijing, et al.
Publicado: (2021)