Cargando…
Current Trends and Confounding Factors in Myoelectric Control: Limb Position and Contraction Intensity
This manuscript presents a hybrid study of a comprehensive review and a systematic (research) analysis. Myoelectric control is the cornerstone of many assistive technologies used in clinical practice, such as prosthetics and orthoses, and human-computer interaction, such as virtual reality control....
Autores principales: | Campbell, Evan, Phinyomark, Angkoon, Scheme, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146367/ https://www.ncbi.nlm.nih.gov/pubmed/32183215 http://dx.doi.org/10.3390/s20061613 |
Ejemplares similares
-
Deep Cross-User Models Reduce the Training Burden in Myoelectric Control
por: Campbell, Evan, et al.
Publicado: (2021) -
Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors
por: Phinyomark, Angkoon, et al.
Publicado: (2018) -
Interpreting Deep Learning Features for Myoelectric Control: A Comparison With Handcrafted Features
por: Côté-Allard, Ulysse, et al.
Publicado: (2020) -
Feature Extraction and Selection for Pain Recognition Using Peripheral Physiological Signals
por: Campbell, Evan, et al.
Publicado: (2019) -
Fractal Analysis of Human Gait Variability via Stride Interval Time Series
por: Phinyomark, Angkoon, et al.
Publicado: (2020)