Cargando…
Heterogeneous Iris One-to-One Certification with Universal Sensors Based On Quality Fuzzy Inference and Multi-Feature Fusion Lightweight Neural Network
Due to the unsteady morphology of heterogeneous irises generated by a variety of different devices and environments, the traditional processing methods of statistical learning or cognitive learning for a single iris source are not effective. Traditional iris recognition divides the whole process int...
Autores principales: | Shuai, Liu, Yuanning, Liu, Xiaodong, Zhu, Guang, Huo, Zukang, Wu, Xinlong, Li, Chaoqun, Wang, Jingwei, Cui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146378/ https://www.ncbi.nlm.nih.gov/pubmed/32210211 http://dx.doi.org/10.3390/s20061785 |
Ejemplares similares
-
Constrained unsteady-state iris fast certification for lightweight training samples based on the scale change stable feature and multi-algorithm voting
por: Liu, Shuai, et al.
Publicado: (2020) -
Lightweight and efficient dual-path fusion network for iris segmentation
por: Lei, Songze, et al.
Publicado: (2023) -
Efficient Iris Recognition Based on Optimal Subfeature Selection and Weighted Subregion Fusion
por: Chen, Ying, et al.
Publicado: (2014) -
Novel Approaches to Improve Iris Recognition System Performance Based on Local Quality Evaluation and Feature Fusion
por: Chen, Ying, et al.
Publicado: (2014) -
Supervised Contrastive Learning and Intra-Dataset Adversarial Adaptation for Iris Segmentation
por: Zhou, Zhiyong, et al.
Publicado: (2022)