Cargando…
Deep Metallic Surface Defect Detection: The New Benchmark and Detection Network
Metallic surface defect detection is an essential and necessary process to control the qualities of industrial products. However, due to the limited data scale and defect categories, existing defect datasets are generally unavailable for the deployment of the detection model. To address this problem...
Autores principales: | Lv, Xiaoming, Duan, Fajie, Jiang, Jia-jia, Fu, Xiao, Gan, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146379/ https://www.ncbi.nlm.nih.gov/pubmed/32168887 http://dx.doi.org/10.3390/s20061562 |
Ejemplares similares
-
Deep Active Learning for Surface Defect Detection
por: Lv, Xiaoming, et al.
Publicado: (2020) -
Detection of Micro-Defects on Metal Screw Surfaces Based on Deep Convolutional Neural Networks
por: Song, Limei, et al.
Publicado: (2018) -
Metal surface defect detection based on improved YOLOv5
por: Zhou, Chuande, et al.
Publicado: (2023) -
Automatic detection and classification of manufacturing defects in metal boxes using deep neural networks
por: Essid, Oumayma, et al.
Publicado: (2018) -
A Particleboard Surface Defect Detection Method Research Based on the Deep Learning Algorithm
por: Zhao, Ziyu, et al.
Publicado: (2022)