Cargando…

Classification of Granite Soils and Prediction of Soil Water Content Using Hyperspectral Visible and Near-Infrared Imaging

Soil water content is one of the most important physical indicators of landslide hazards. Therefore, quickly and non-destructively classifying soils and determining or predicting water content are essential tasks for the detection of landslide hazards. We investigated hyperspectral information in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, Hwan-Hui, Cheon, Enok, Lee, Deuk-Hwan, Jeon, Jun-Seo, Lee, Seung-Rae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146463/
https://www.ncbi.nlm.nih.gov/pubmed/32183206
http://dx.doi.org/10.3390/s20061611
Descripción
Sumario:Soil water content is one of the most important physical indicators of landslide hazards. Therefore, quickly and non-destructively classifying soils and determining or predicting water content are essential tasks for the detection of landslide hazards. We investigated hyperspectral information in the visible and near-infrared regions (400–1000 nm) of 162 granite soil samples collected from Seoul (Republic of Korea). First, effective wavelengths were extracted from pre-processed spectral data using the successive projection algorithm to develop a classification model. A gray-level co-occurrence matrix was employed to extract textural variables, and a support vector machine was used to establish calibration models and the prediction model. The results show that an optimal correct classification rate of 89.8% could be achieved by combining data sets of effective wavelengths and texture features for modeling. Using the developed classification model, an artificial neural network (ANN) model for the prediction of soil water content was constructed. The input parameter was composed of Munsell soil color, area of reflectance (near-infrared), and dry unit weight. The accuracy in water content prediction of the developed ANN model was verified by a coefficient of determination and mean absolute percentage error of 0.91 and 10.1%, respectively.