Cargando…
Data-Driven Prediction of Vessel Propulsion Power Using Support Vector Regression with Onboard Measurement and Ocean Data
The fluctuation of the oil price and the growing requirement to reduce greenhouse gas emissions have forced ship builders and shipping companies to improve the energy efficiency of the vessels. The accurate prediction of the required propulsion power at various operating condition is essential to ev...
Autores principales: | Kim, Donghyun, Lee, Sangbong, Lee, Jihwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146482/ https://www.ncbi.nlm.nih.gov/pubmed/32178345 http://dx.doi.org/10.3390/s20061588 |
Ejemplares similares
-
Feature Attribution Analysis to Quantify the Impact of Oceanographic and Maneuverability Factors on Vessel Shaft Power Using Explainable Tree-Based Model
por: Kim, Donghyun, et al.
Publicado: (2023) -
Evaluation of the environmental and economic impacts of electric propulsion systems onboard ships: case study passenger vessel
por: Ammar, Nader R., et al.
Publicado: (2021) -
Explainable Anomaly Detection Framework for Maritime Main Engine Sensor Data
por: Kim, Donghyun, et al.
Publicado: (2021) -
An Ensemble-Based Approach to Anomaly Detection in Marine Engine Sensor Streams for Efficient Condition Monitoring and Analysis
por: Kim, Donghyun, et al.
Publicado: (2020) -
Optimizing the Empirical Parameters of the Data-Driven Algorithm for SIF Retrieval for SIFIS Onboard TECIS-1 Satellite
por: Zou, Chu, et al.
Publicado: (2021)