Cargando…
Adaptive Real-Time Routing Protocol for (m,k)-Firm in Industrial Wireless Multimedia Sensor Networks †
Many applications are able to obtain enriched information by employing a wireless multimedia sensor network (WMSN) in industrial environments, which consists of nodes that are capable of processing multimedia data. However, as many aspects of WMSNs still need to be refined, this remains a potential...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146602/ https://www.ncbi.nlm.nih.gov/pubmed/32183403 http://dx.doi.org/10.3390/s20061633 |
Sumario: | Many applications are able to obtain enriched information by employing a wireless multimedia sensor network (WMSN) in industrial environments, which consists of nodes that are capable of processing multimedia data. However, as many aspects of WMSNs still need to be refined, this remains a potential research area. An efficient application needs the ability to capture and store the latest information about an object or event, which requires real-time multimedia data to be delivered to the sink timely. Motivated to achieve this goal, we developed a new adaptive QoS routing protocol based on the (m,k)-firm model. The proposed model processes captured information by employing a multimedia stream in the (m,k)-firm format. In addition, the model includes a new adaptive real-time protocol and traffic handling scheme to transmit event information by selecting the next hop according to the flow status as well as the requirement of the (m,k)-firm model. Different from the previous approach, two level adjustment in routing protocol and traffic management are able to increase the number of successful packets within the deadline as well as path setup schemes along the previous route is able to reduce the packet loss until a new path is established. Our simulation results demonstrate that the proposed schemes are able to improve the stream dynamic success ratio and network lifetime compared to previous work by meeting the requirement of the (m,k)-firm model regardless of the amount of traffic. |
---|