Cargando…
TAI-SARNET: Deep Transferred Atrous-Inception CNN for Small Samples SAR ATR
Since Synthetic Aperture Radar (SAR) targets are full of coherent speckle noise, the traditional deep learning models are difficult to effectively extract key features of the targets and share high computational complexity. To solve the problem, an effective lightweight Convolutional Neural Network...
Autores principales: | Ying, Zilu, Xuan, Chen, Zhai, Yikui, Sun, Bing, Li, Jingwen, Deng, Wenbo, Mai, Chaoyun, Wang, Faguan, Labati, Ruggero Donida, Piuri, Vincenzo, Scotti, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146637/ https://www.ncbi.nlm.nih.gov/pubmed/32204506 http://dx.doi.org/10.3390/s20061724 |
Ejemplares similares
-
Touchless Fingerprint Biometrics
por: Labati, Ruggero, et al.
Publicado: (2015) -
BeautyNet: Joint Multiscale CNN and Transfer Learning Method for Unconstrained Facial Beauty Prediction
por: Zhai, Yikui, et al.
Publicado: (2019) -
Robust SAR Automatic Target Recognition Based on Transferred MS-CNN with L(2)-Regularization
por: Zhai, Yikui, et al.
Publicado: (2019) -
Deep supervision and atrous inception-based U-Net combining CRF for automatic liver segmentation from CT
por: Lv, Peiqing, et al.
Publicado: (2022) -
DSTEELNet: A Real-Time Parallel Dilated CNN with Atrous Spatial Pyramid Pooling for Detecting and Classifying Defects in Surface Steel Strips
por: Ahmed, Khaled R.
Publicado: (2023)