Cargando…
Radar-Based Detection of Respiration Rate with Adaptive Harmonic Quefrency Selection
Continuous respiration monitoring is important for predicting a potential disease. Due to respiration measurements using contact sensors, it is difficult to achieve continuous measurement because the sensors are inconvenient to attach. In this study, a radar sensor was used for non-contact respirati...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146735/ https://www.ncbi.nlm.nih.gov/pubmed/32183139 http://dx.doi.org/10.3390/s20061607 |
_version_ | 1783520269839630336 |
---|---|
author | Lee, JeeEun Yoo, Sun K. |
author_facet | Lee, JeeEun Yoo, Sun K. |
author_sort | Lee, JeeEun |
collection | PubMed |
description | Continuous respiration monitoring is important for predicting a potential disease. Due to respiration measurements using contact sensors, it is difficult to achieve continuous measurement because the sensors are inconvenient to attach. In this study, a radar sensor was used for non-contact respiration measurements. The radar sensor had a high precision and could even be used in the dark. It could also be used continuously regardless of time and place. The radar sensor relied on the periodicity of respiration to detect the respiration rate. A respiration adaptive interval was set and the respiration rate was detected through harmonic quefrency selection. As a result, it was confirmed that there was no difference between the respiratory rate measured using a respiration belt and the respiratory rate detected using a radar sensor. Furthermore, case studies on changes in the radar position and about measurement for long periods confirmed that the radar sensor could detect respiration rate continuously regardless of the position and measurement duration. |
format | Online Article Text |
id | pubmed-7146735 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71467352020-04-20 Radar-Based Detection of Respiration Rate with Adaptive Harmonic Quefrency Selection Lee, JeeEun Yoo, Sun K. Sensors (Basel) Article Continuous respiration monitoring is important for predicting a potential disease. Due to respiration measurements using contact sensors, it is difficult to achieve continuous measurement because the sensors are inconvenient to attach. In this study, a radar sensor was used for non-contact respiration measurements. The radar sensor had a high precision and could even be used in the dark. It could also be used continuously regardless of time and place. The radar sensor relied on the periodicity of respiration to detect the respiration rate. A respiration adaptive interval was set and the respiration rate was detected through harmonic quefrency selection. As a result, it was confirmed that there was no difference between the respiratory rate measured using a respiration belt and the respiratory rate detected using a radar sensor. Furthermore, case studies on changes in the radar position and about measurement for long periods confirmed that the radar sensor could detect respiration rate continuously regardless of the position and measurement duration. MDPI 2020-03-13 /pmc/articles/PMC7146735/ /pubmed/32183139 http://dx.doi.org/10.3390/s20061607 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, JeeEun Yoo, Sun K. Radar-Based Detection of Respiration Rate with Adaptive Harmonic Quefrency Selection |
title | Radar-Based Detection of Respiration Rate with Adaptive Harmonic Quefrency Selection |
title_full | Radar-Based Detection of Respiration Rate with Adaptive Harmonic Quefrency Selection |
title_fullStr | Radar-Based Detection of Respiration Rate with Adaptive Harmonic Quefrency Selection |
title_full_unstemmed | Radar-Based Detection of Respiration Rate with Adaptive Harmonic Quefrency Selection |
title_short | Radar-Based Detection of Respiration Rate with Adaptive Harmonic Quefrency Selection |
title_sort | radar-based detection of respiration rate with adaptive harmonic quefrency selection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146735/ https://www.ncbi.nlm.nih.gov/pubmed/32183139 http://dx.doi.org/10.3390/s20061607 |
work_keys_str_mv | AT leejeeeun radarbaseddetectionofrespirationratewithadaptiveharmonicquefrencyselection AT yoosunk radarbaseddetectionofrespirationratewithadaptiveharmonicquefrencyselection |