Cargando…

Medical-Grade ECG Sensor for Long-Term Monitoring

The recent trend in electrocardiogram (ECG) device development is towards wireless body sensors applied for patient monitoring. The ultimate goal is to develop a multi-functional body sensor that will provide synchronized vital bio-signs of the monitored user. In this paper, we present an ECG sensor...

Descripción completa

Detalles Bibliográficos
Autores principales: Rashkovska, Aleksandra, Depolli, Matjaž, Tomašić, Ivan, Avbelj, Viktor, Trobec, Roman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146736/
https://www.ncbi.nlm.nih.gov/pubmed/32197444
http://dx.doi.org/10.3390/s20061695
Descripción
Sumario:The recent trend in electrocardiogram (ECG) device development is towards wireless body sensors applied for patient monitoring. The ultimate goal is to develop a multi-functional body sensor that will provide synchronized vital bio-signs of the monitored user. In this paper, we present an ECG sensor for long-term monitoring, which measures the surface potential difference between proximal electrodes near the heart, called differential ECG lead or differential lead, in short. The sensor has been certified as a class IIa medical device and is available on the market under the trademark Savvy ECG. An improvement from the user’s perspective—immediate access to the measured data—is also implemented into the design. With appropriate placement of the device on the chest, a very clear distinction of all electrocardiographic waves can be achieved, allowing for ECG recording of high quality, sufficient for medical analysis. Experimental results that elucidate the measurements from a differential lead regarding sensors’ position, the impact of artifacts, and potential diagnostic value, are shown. We demonstrate the sensors’ potential by presenting results from its various areas of application: medicine, sports, veterinary, and some new fields of investigation, like hearth rate variability biofeedback assessment and biometric authentication.