Cargando…
Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches
Personal Thermal Comfort models consider personal user feedback as a target value. The growing development of integrated “smart” devices following the concept of the Internet of Things and data-processing algorithms based on Machine Learning techniques allows developing promising frameworks to reach...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146748/ https://www.ncbi.nlm.nih.gov/pubmed/32183327 http://dx.doi.org/10.3390/s20061627 |
_version_ | 1783520272963338240 |
---|---|
author | Salamone, Francesco Bellazzi, Alice Belussi, Lorenzo Damato, Gianfranco Danza, Ludovico Dell’Aquila, Federico Ghellere, Matteo Megale, Valentino Meroni, Italo Vitaletti, Walter |
author_facet | Salamone, Francesco Bellazzi, Alice Belussi, Lorenzo Damato, Gianfranco Danza, Ludovico Dell’Aquila, Federico Ghellere, Matteo Megale, Valentino Meroni, Italo Vitaletti, Walter |
author_sort | Salamone, Francesco |
collection | PubMed |
description | Personal Thermal Comfort models consider personal user feedback as a target value. The growing development of integrated “smart” devices following the concept of the Internet of Things and data-processing algorithms based on Machine Learning techniques allows developing promising frameworks to reach the best level of indoor thermal comfort closest to the real needs of users. The article investigates the potential of a new approach aiming at evaluating the effect of visual stimuli on personal thermal comfort perception through a comparison of 25 participants’ feedback exposed to a real scenario in a test cell and the same environment reproduced in Virtual Reality. The users’ biometric data and feedback about their thermal perception along with environmental parameters are collected in a dataset and managed with different Machine Learning techniques. The most suitable algorithm, among those selected, and the influential variables to predict the Personal Thermal Comfort Perception are identified. The Extra Trees classifier emerged as the most useful algorithm in this specific case. In real and virtual scenarios, the most important variables that allow predicting the target value are identified with an average accuracy higher than 0.99. |
format | Online Article Text |
id | pubmed-7146748 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71467482020-04-20 Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches Salamone, Francesco Bellazzi, Alice Belussi, Lorenzo Damato, Gianfranco Danza, Ludovico Dell’Aquila, Federico Ghellere, Matteo Megale, Valentino Meroni, Italo Vitaletti, Walter Sensors (Basel) Article Personal Thermal Comfort models consider personal user feedback as a target value. The growing development of integrated “smart” devices following the concept of the Internet of Things and data-processing algorithms based on Machine Learning techniques allows developing promising frameworks to reach the best level of indoor thermal comfort closest to the real needs of users. The article investigates the potential of a new approach aiming at evaluating the effect of visual stimuli on personal thermal comfort perception through a comparison of 25 participants’ feedback exposed to a real scenario in a test cell and the same environment reproduced in Virtual Reality. The users’ biometric data and feedback about their thermal perception along with environmental parameters are collected in a dataset and managed with different Machine Learning techniques. The most suitable algorithm, among those selected, and the influential variables to predict the Personal Thermal Comfort Perception are identified. The Extra Trees classifier emerged as the most useful algorithm in this specific case. In real and virtual scenarios, the most important variables that allow predicting the target value are identified with an average accuracy higher than 0.99. MDPI 2020-03-14 /pmc/articles/PMC7146748/ /pubmed/32183327 http://dx.doi.org/10.3390/s20061627 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Salamone, Francesco Bellazzi, Alice Belussi, Lorenzo Damato, Gianfranco Danza, Ludovico Dell’Aquila, Federico Ghellere, Matteo Megale, Valentino Meroni, Italo Vitaletti, Walter Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches |
title | Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches |
title_full | Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches |
title_fullStr | Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches |
title_full_unstemmed | Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches |
title_short | Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches |
title_sort | evaluation of the visual stimuli on personal thermal comfort perception in real and virtual environments using machine learning approaches |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146748/ https://www.ncbi.nlm.nih.gov/pubmed/32183327 http://dx.doi.org/10.3390/s20061627 |
work_keys_str_mv | AT salamonefrancesco evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches AT bellazzialice evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches AT belussilorenzo evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches AT damatogianfranco evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches AT danzaludovico evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches AT dellaquilafederico evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches AT ghellerematteo evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches AT megalevalentino evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches AT meroniitalo evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches AT vitalettiwalter evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches |