Cargando…

Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches

Personal Thermal Comfort models consider personal user feedback as a target value. The growing development of integrated “smart” devices following the concept of the Internet of Things and data-processing algorithms based on Machine Learning techniques allows developing promising frameworks to reach...

Descripción completa

Detalles Bibliográficos
Autores principales: Salamone, Francesco, Bellazzi, Alice, Belussi, Lorenzo, Damato, Gianfranco, Danza, Ludovico, Dell’Aquila, Federico, Ghellere, Matteo, Megale, Valentino, Meroni, Italo, Vitaletti, Walter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146748/
https://www.ncbi.nlm.nih.gov/pubmed/32183327
http://dx.doi.org/10.3390/s20061627
_version_ 1783520272963338240
author Salamone, Francesco
Bellazzi, Alice
Belussi, Lorenzo
Damato, Gianfranco
Danza, Ludovico
Dell’Aquila, Federico
Ghellere, Matteo
Megale, Valentino
Meroni, Italo
Vitaletti, Walter
author_facet Salamone, Francesco
Bellazzi, Alice
Belussi, Lorenzo
Damato, Gianfranco
Danza, Ludovico
Dell’Aquila, Federico
Ghellere, Matteo
Megale, Valentino
Meroni, Italo
Vitaletti, Walter
author_sort Salamone, Francesco
collection PubMed
description Personal Thermal Comfort models consider personal user feedback as a target value. The growing development of integrated “smart” devices following the concept of the Internet of Things and data-processing algorithms based on Machine Learning techniques allows developing promising frameworks to reach the best level of indoor thermal comfort closest to the real needs of users. The article investigates the potential of a new approach aiming at evaluating the effect of visual stimuli on personal thermal comfort perception through a comparison of 25 participants’ feedback exposed to a real scenario in a test cell and the same environment reproduced in Virtual Reality. The users’ biometric data and feedback about their thermal perception along with environmental parameters are collected in a dataset and managed with different Machine Learning techniques. The most suitable algorithm, among those selected, and the influential variables to predict the Personal Thermal Comfort Perception are identified. The Extra Trees classifier emerged as the most useful algorithm in this specific case. In real and virtual scenarios, the most important variables that allow predicting the target value are identified with an average accuracy higher than 0.99.
format Online
Article
Text
id pubmed-7146748
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-71467482020-04-20 Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches Salamone, Francesco Bellazzi, Alice Belussi, Lorenzo Damato, Gianfranco Danza, Ludovico Dell’Aquila, Federico Ghellere, Matteo Megale, Valentino Meroni, Italo Vitaletti, Walter Sensors (Basel) Article Personal Thermal Comfort models consider personal user feedback as a target value. The growing development of integrated “smart” devices following the concept of the Internet of Things and data-processing algorithms based on Machine Learning techniques allows developing promising frameworks to reach the best level of indoor thermal comfort closest to the real needs of users. The article investigates the potential of a new approach aiming at evaluating the effect of visual stimuli on personal thermal comfort perception through a comparison of 25 participants’ feedback exposed to a real scenario in a test cell and the same environment reproduced in Virtual Reality. The users’ biometric data and feedback about their thermal perception along with environmental parameters are collected in a dataset and managed with different Machine Learning techniques. The most suitable algorithm, among those selected, and the influential variables to predict the Personal Thermal Comfort Perception are identified. The Extra Trees classifier emerged as the most useful algorithm in this specific case. In real and virtual scenarios, the most important variables that allow predicting the target value are identified with an average accuracy higher than 0.99. MDPI 2020-03-14 /pmc/articles/PMC7146748/ /pubmed/32183327 http://dx.doi.org/10.3390/s20061627 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Salamone, Francesco
Bellazzi, Alice
Belussi, Lorenzo
Damato, Gianfranco
Danza, Ludovico
Dell’Aquila, Federico
Ghellere, Matteo
Megale, Valentino
Meroni, Italo
Vitaletti, Walter
Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches
title Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches
title_full Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches
title_fullStr Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches
title_full_unstemmed Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches
title_short Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches
title_sort evaluation of the visual stimuli on personal thermal comfort perception in real and virtual environments using machine learning approaches
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146748/
https://www.ncbi.nlm.nih.gov/pubmed/32183327
http://dx.doi.org/10.3390/s20061627
work_keys_str_mv AT salamonefrancesco evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches
AT bellazzialice evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches
AT belussilorenzo evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches
AT damatogianfranco evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches
AT danzaludovico evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches
AT dellaquilafederico evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches
AT ghellerematteo evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches
AT megalevalentino evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches
AT meroniitalo evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches
AT vitalettiwalter evaluationofthevisualstimulionpersonalthermalcomfortperceptioninrealandvirtualenvironmentsusingmachinelearningapproaches