Cargando…
Rolling-Element Bearing Fault Diagnosis Using Improved LeNet-5 Network
To address the problems of low recognition accuracy, slow convergence speed and weak generalization ability of traditional LeNet-5 network used in rolling-element bearing fault diagnosis, a rolling-element bearing fault diagnosis method using improved 2D LeNet-5 network is put forward. The following...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146750/ https://www.ncbi.nlm.nih.gov/pubmed/32197388 http://dx.doi.org/10.3390/s20061693 |
Sumario: | To address the problems of low recognition accuracy, slow convergence speed and weak generalization ability of traditional LeNet-5 network used in rolling-element bearing fault diagnosis, a rolling-element bearing fault diagnosis method using improved 2D LeNet-5 network is put forward. The following improvements to the traditional LeNet-5 network are made: the convolution and pooling layers are reasonably designed and the size and number of convolution kernels are carefully adjusted to improve fault classification capability; the batch normalization (BN) is adopted after each convolution layer to improve convergence speed; the dropout operation is performed after each full-connection layer except the last layer to enhance generalization ability. To further improve the efficiency and effectiveness of fault diagnosis, on the basis of improved 2D LeNet-5 network, an end-to-end rolling-element bearing fault diagnosis method based on the improved 1D LeNet-5 network is proposed, which can directly perform 1D convolution and pooling operations on raw vibration signals without any preprocessing. The results show that the improved 2D LeNet-5 network and improved 1D LeNet-5 network achieve a significant performance improvement than traditional LeNet-5 network, the improved 1D LeNet-5 network provides a higher fault diagnosis accuracy with a less training time in most cases, and the improved 2D LeNet-5 network performs better than improved 1D LeNet-5 network under small training samples and strong noise environment. |
---|