Cargando…

Ballistic Phonons in Ultrathin Nanowires

[Image: see text] According to Fourier’s law, a temperature difference across a material results in a linear temperature profile and a thermal conductance that decreases inversely proportional to the system length. These are the hallmarks of diffusive heat flow. Here, we report heat flow in ultrathi...

Descripción completa

Detalles Bibliográficos
Autores principales: Vakulov, Daniel, Gireesan, Subash, Swinkels, Milo Y., Chavez, Ruben, Vogelaar, Tom, Torres, Pol, Campo, Alessio, De Luca, Marta, Verheijen, Marcel A., Koelling, Sebastian, Gagliano, Luca, Haverkort, Jos E. M., Alvarez, F. Xavier, Bobbert, Peter A., Zardo, Ilaria, Bakkers, Erik P. A. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146865/
https://www.ncbi.nlm.nih.gov/pubmed/32091910
http://dx.doi.org/10.1021/acs.nanolett.0c00320
_version_ 1783520300296568832
author Vakulov, Daniel
Gireesan, Subash
Swinkels, Milo Y.
Chavez, Ruben
Vogelaar, Tom
Torres, Pol
Campo, Alessio
De Luca, Marta
Verheijen, Marcel A.
Koelling, Sebastian
Gagliano, Luca
Haverkort, Jos E. M.
Alvarez, F. Xavier
Bobbert, Peter A.
Zardo, Ilaria
Bakkers, Erik P. A. M.
author_facet Vakulov, Daniel
Gireesan, Subash
Swinkels, Milo Y.
Chavez, Ruben
Vogelaar, Tom
Torres, Pol
Campo, Alessio
De Luca, Marta
Verheijen, Marcel A.
Koelling, Sebastian
Gagliano, Luca
Haverkort, Jos E. M.
Alvarez, F. Xavier
Bobbert, Peter A.
Zardo, Ilaria
Bakkers, Erik P. A. M.
author_sort Vakulov, Daniel
collection PubMed
description [Image: see text] According to Fourier’s law, a temperature difference across a material results in a linear temperature profile and a thermal conductance that decreases inversely proportional to the system length. These are the hallmarks of diffusive heat flow. Here, we report heat flow in ultrathin (25 nm) GaP nanowires in the absence of a temperature gradient within the wire and find that the heat conductance is independent of wire length. These observations deviate from Fourier’s law and are direct proof of ballistic heat flow, persisting for wire lengths up to at least 15 μm at room temperature. When doubling the wire diameter, a remarkably sudden transition to diffusive heat flow is observed. The ballistic heat flow in the ultrathin wires can be modeled within Landauer’s formalism by ballistic phonons with an extraordinarily long mean free path.
format Online
Article
Text
id pubmed-7146865
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-71468652020-04-13 Ballistic Phonons in Ultrathin Nanowires Vakulov, Daniel Gireesan, Subash Swinkels, Milo Y. Chavez, Ruben Vogelaar, Tom Torres, Pol Campo, Alessio De Luca, Marta Verheijen, Marcel A. Koelling, Sebastian Gagliano, Luca Haverkort, Jos E. M. Alvarez, F. Xavier Bobbert, Peter A. Zardo, Ilaria Bakkers, Erik P. A. M. Nano Lett [Image: see text] According to Fourier’s law, a temperature difference across a material results in a linear temperature profile and a thermal conductance that decreases inversely proportional to the system length. These are the hallmarks of diffusive heat flow. Here, we report heat flow in ultrathin (25 nm) GaP nanowires in the absence of a temperature gradient within the wire and find that the heat conductance is independent of wire length. These observations deviate from Fourier’s law and are direct proof of ballistic heat flow, persisting for wire lengths up to at least 15 μm at room temperature. When doubling the wire diameter, a remarkably sudden transition to diffusive heat flow is observed. The ballistic heat flow in the ultrathin wires can be modeled within Landauer’s formalism by ballistic phonons with an extraordinarily long mean free path. American Chemical Society 2020-02-24 2020-04-08 /pmc/articles/PMC7146865/ /pubmed/32091910 http://dx.doi.org/10.1021/acs.nanolett.0c00320 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Vakulov, Daniel
Gireesan, Subash
Swinkels, Milo Y.
Chavez, Ruben
Vogelaar, Tom
Torres, Pol
Campo, Alessio
De Luca, Marta
Verheijen, Marcel A.
Koelling, Sebastian
Gagliano, Luca
Haverkort, Jos E. M.
Alvarez, F. Xavier
Bobbert, Peter A.
Zardo, Ilaria
Bakkers, Erik P. A. M.
Ballistic Phonons in Ultrathin Nanowires
title Ballistic Phonons in Ultrathin Nanowires
title_full Ballistic Phonons in Ultrathin Nanowires
title_fullStr Ballistic Phonons in Ultrathin Nanowires
title_full_unstemmed Ballistic Phonons in Ultrathin Nanowires
title_short Ballistic Phonons in Ultrathin Nanowires
title_sort ballistic phonons in ultrathin nanowires
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146865/
https://www.ncbi.nlm.nih.gov/pubmed/32091910
http://dx.doi.org/10.1021/acs.nanolett.0c00320
work_keys_str_mv AT vakulovdaniel ballisticphononsinultrathinnanowires
AT gireesansubash ballisticphononsinultrathinnanowires
AT swinkelsmiloy ballisticphononsinultrathinnanowires
AT chavezruben ballisticphononsinultrathinnanowires
AT vogelaartom ballisticphononsinultrathinnanowires
AT torrespol ballisticphononsinultrathinnanowires
AT campoalessio ballisticphononsinultrathinnanowires
AT delucamarta ballisticphononsinultrathinnanowires
AT verheijenmarcela ballisticphononsinultrathinnanowires
AT koellingsebastian ballisticphononsinultrathinnanowires
AT gaglianoluca ballisticphononsinultrathinnanowires
AT haverkortjosem ballisticphononsinultrathinnanowires
AT alvarezfxavier ballisticphononsinultrathinnanowires
AT bobbertpetera ballisticphononsinultrathinnanowires
AT zardoilaria ballisticphononsinultrathinnanowires
AT bakkerserikpam ballisticphononsinultrathinnanowires