Cargando…
Ballistic Phonons in Ultrathin Nanowires
[Image: see text] According to Fourier’s law, a temperature difference across a material results in a linear temperature profile and a thermal conductance that decreases inversely proportional to the system length. These are the hallmarks of diffusive heat flow. Here, we report heat flow in ultrathi...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146865/ https://www.ncbi.nlm.nih.gov/pubmed/32091910 http://dx.doi.org/10.1021/acs.nanolett.0c00320 |
_version_ | 1783520300296568832 |
---|---|
author | Vakulov, Daniel Gireesan, Subash Swinkels, Milo Y. Chavez, Ruben Vogelaar, Tom Torres, Pol Campo, Alessio De Luca, Marta Verheijen, Marcel A. Koelling, Sebastian Gagliano, Luca Haverkort, Jos E. M. Alvarez, F. Xavier Bobbert, Peter A. Zardo, Ilaria Bakkers, Erik P. A. M. |
author_facet | Vakulov, Daniel Gireesan, Subash Swinkels, Milo Y. Chavez, Ruben Vogelaar, Tom Torres, Pol Campo, Alessio De Luca, Marta Verheijen, Marcel A. Koelling, Sebastian Gagliano, Luca Haverkort, Jos E. M. Alvarez, F. Xavier Bobbert, Peter A. Zardo, Ilaria Bakkers, Erik P. A. M. |
author_sort | Vakulov, Daniel |
collection | PubMed |
description | [Image: see text] According to Fourier’s law, a temperature difference across a material results in a linear temperature profile and a thermal conductance that decreases inversely proportional to the system length. These are the hallmarks of diffusive heat flow. Here, we report heat flow in ultrathin (25 nm) GaP nanowires in the absence of a temperature gradient within the wire and find that the heat conductance is independent of wire length. These observations deviate from Fourier’s law and are direct proof of ballistic heat flow, persisting for wire lengths up to at least 15 μm at room temperature. When doubling the wire diameter, a remarkably sudden transition to diffusive heat flow is observed. The ballistic heat flow in the ultrathin wires can be modeled within Landauer’s formalism by ballistic phonons with an extraordinarily long mean free path. |
format | Online Article Text |
id | pubmed-7146865 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-71468652020-04-13 Ballistic Phonons in Ultrathin Nanowires Vakulov, Daniel Gireesan, Subash Swinkels, Milo Y. Chavez, Ruben Vogelaar, Tom Torres, Pol Campo, Alessio De Luca, Marta Verheijen, Marcel A. Koelling, Sebastian Gagliano, Luca Haverkort, Jos E. M. Alvarez, F. Xavier Bobbert, Peter A. Zardo, Ilaria Bakkers, Erik P. A. M. Nano Lett [Image: see text] According to Fourier’s law, a temperature difference across a material results in a linear temperature profile and a thermal conductance that decreases inversely proportional to the system length. These are the hallmarks of diffusive heat flow. Here, we report heat flow in ultrathin (25 nm) GaP nanowires in the absence of a temperature gradient within the wire and find that the heat conductance is independent of wire length. These observations deviate from Fourier’s law and are direct proof of ballistic heat flow, persisting for wire lengths up to at least 15 μm at room temperature. When doubling the wire diameter, a remarkably sudden transition to diffusive heat flow is observed. The ballistic heat flow in the ultrathin wires can be modeled within Landauer’s formalism by ballistic phonons with an extraordinarily long mean free path. American Chemical Society 2020-02-24 2020-04-08 /pmc/articles/PMC7146865/ /pubmed/32091910 http://dx.doi.org/10.1021/acs.nanolett.0c00320 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Vakulov, Daniel Gireesan, Subash Swinkels, Milo Y. Chavez, Ruben Vogelaar, Tom Torres, Pol Campo, Alessio De Luca, Marta Verheijen, Marcel A. Koelling, Sebastian Gagliano, Luca Haverkort, Jos E. M. Alvarez, F. Xavier Bobbert, Peter A. Zardo, Ilaria Bakkers, Erik P. A. M. Ballistic Phonons in Ultrathin Nanowires |
title | Ballistic Phonons in Ultrathin Nanowires |
title_full | Ballistic Phonons in Ultrathin Nanowires |
title_fullStr | Ballistic Phonons in Ultrathin Nanowires |
title_full_unstemmed | Ballistic Phonons in Ultrathin Nanowires |
title_short | Ballistic Phonons in Ultrathin Nanowires |
title_sort | ballistic phonons in ultrathin nanowires |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146865/ https://www.ncbi.nlm.nih.gov/pubmed/32091910 http://dx.doi.org/10.1021/acs.nanolett.0c00320 |
work_keys_str_mv | AT vakulovdaniel ballisticphononsinultrathinnanowires AT gireesansubash ballisticphononsinultrathinnanowires AT swinkelsmiloy ballisticphononsinultrathinnanowires AT chavezruben ballisticphononsinultrathinnanowires AT vogelaartom ballisticphononsinultrathinnanowires AT torrespol ballisticphononsinultrathinnanowires AT campoalessio ballisticphononsinultrathinnanowires AT delucamarta ballisticphononsinultrathinnanowires AT verheijenmarcela ballisticphononsinultrathinnanowires AT koellingsebastian ballisticphononsinultrathinnanowires AT gaglianoluca ballisticphononsinultrathinnanowires AT haverkortjosem ballisticphononsinultrathinnanowires AT alvarezfxavier ballisticphononsinultrathinnanowires AT bobbertpetera ballisticphononsinultrathinnanowires AT zardoilaria ballisticphononsinultrathinnanowires AT bakkerserikpam ballisticphononsinultrathinnanowires |