Cargando…
Analysis of causes of death among brought-in-dead cases in a third-level Hospital in Lusaka, Republic of Zambia, using the tariff method 2.0 for verbal autopsy: a cross-sectional study
BACKGROUND: Over one third of deaths in Zambian health facilities involve someone who has already died before arrival (i.e., Brough in Dead), and in most BiD cases, the CoD have not been fully analyzed. Therefore, this study was designed to evaluate the function of automated VA based on the Tariff M...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147005/ https://www.ncbi.nlm.nih.gov/pubmed/32272924 http://dx.doi.org/10.1186/s12889-020-08575-y |
Sumario: | BACKGROUND: Over one third of deaths in Zambian health facilities involve someone who has already died before arrival (i.e., Brough in Dead), and in most BiD cases, the CoD have not been fully analyzed. Therefore, this study was designed to evaluate the function of automated VA based on the Tariff Method 2.0 to identify the CoD among the BiD cases and the usefulness by comparing the data on the death notification form. METHODS: The target site was one third-level hospital in the Republic of Zambia’s capital city. All BiD cases who reached the target health facility from January to August 2017 were included. The deceased’s closest relatives were interviewed using a structured VA questionnaire and the data were analyzed using the SmartVA to determine the CoD at the individual and population level. The CoD were compared with description on the death notification forms by using t-test and Cohen’s kappa coefficient. RESULTS: One thousand three hundred seventy-eight and 209 cases were included for persons aged 13 years and older (Adult) and those aged 1 month to 13 years old (Child), respectively. The top CoD for Adults were infectious diseases followed by non-communicable diseases and that for Child were infectious diseases, followed by accidents. The proportion of cases with a determined CoD was significantly higher when using the SmartVA (75% for Adult and 67% for Child) than the death notification form (61%). A proportion (42.7% for Adult and 46% for Child) of the CoD-determined cases matched in both sources, with a low concordance rate for Adult (kappa coefficient = 0.1385) and a good for Child(kappa coefficient = 0.635). CONCLUSIONS: The CoD of the BiD cases were successfully analyzed using the SmartVA for the first time in Zambia. While there many erroneous descriptions on the death notification form, the SmartVA could determine the CoD among more BiD cases. Since the information on the death notification form is reflected in the national vital statistics, more accurate and complete CoD data are required. In order to strengthen the death registration system with accurate CoD, it will be useful to embed the SmartVA in Zambia’s health information system. |
---|