Cargando…
An End-to-End Trainable Multi-Column CNN for Scene Recognition in Extremely Changing Environment
Scene recognition is an essential part in the vision-based robot navigation domain. The successful application of deep learning technology has triggered more extensive preliminary studies on scene recognition, which all use extracted features from networks that are trained for recognition tasks. In...
Autores principales: | Li, Zhenyu, Zhou, Aiguo, Shen, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147165/ https://www.ncbi.nlm.nih.gov/pubmed/32168843 http://dx.doi.org/10.3390/s20061556 |
Ejemplares similares
-
A Multi-Column CNN Model for Emotion Recognition from EEG Signals
por: Yang, Heekyung, et al.
Publicado: (2019) -
Cursive-Text: A Comprehensive Dataset for End-to-End Urdu Text Recognition in Natural Scene Images
por: Chandio, Asghar Ali, et al.
Publicado: (2020) -
Pedestrian attribute recognition using trainable Gabor wavelets
por: Junejo, Imran N., et al.
Publicado: (2021) -
Issues on Trainability
por: Radak, Zsolt, et al.
Publicado: (2022) -
Empathy: Process of adaptation and change, is it trainable?
por: Srivastava, Kalpana, et al.
Publicado: (2016)