Cargando…

Mesenchymal stem cells and management of COVID-19 pneumonia

Human coronavirus, hCoV-19, is highly pathogenic with severe pneumonia associated with rapid virus replication. Arising in Wuhan China December 2019, the current COVID-19 epidemic has rapidly grown with person-to-person infection expanding to become a global health emergency now on pandemic scale. G...

Descripción completa

Detalles Bibliográficos
Autor principal: Metcalfe, Su M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier B.V. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147223/
https://www.ncbi.nlm.nih.gov/pubmed/32296777
http://dx.doi.org/10.1016/j.medidd.2020.100019
Descripción
Sumario:Human coronavirus, hCoV-19, is highly pathogenic with severe pneumonia associated with rapid virus replication. Arising in Wuhan China December 2019, the current COVID-19 epidemic has rapidly grown with person-to-person infection expanding to become a global health emergency now on pandemic scale. Governments will not be able to minimise both deaths from COVID-19 and the economic impact of viral spread in mitigation of this current COVID-19 pandemic, according to Anderson et al. 2020 [1], Keeping mortality as low as possible will be the highest priority for individuals; hence governments must put in place measures to ameliorate the inevitable economic downturn. The current global picture shows small chains of transmission in many countries and large chains resulting in extensive spread in a few countries, such as Italy, Iran, South Korea, and Japan. Most countries are likely to have spread of COVID-19, at least in the early stages, before any mitigation measures have an impact. The scale of the problem is massive. Here I consider new approaches to improve patient's biological resistance to COVID-19 using stem cells, and how benefit might be scaled and simplified using synthetic stem cells to meet logistical needs within a short time frame.